【題目】已知不恒為零的函數(shù)f(x)在定義域[0,1]上的圖象連續(xù)不間斷,滿足條件f(0)=f(1)=0,且對任意x1 , x2∈[0,1]都有|f(x1)﹣f(x2)|≤ |x1﹣x2|,則對下列四個結(jié)論: ①若f(1﹣x)=f(x)且0≤x≤ 時,f(x)= x(x﹣ ),則當 <x≤1時,f(x)= (1﹣x)( ﹣x);
②若對x∈[0,1]都有f(1﹣x)=﹣f(x),則y=f(x)至少有3個零點;
③對x∈[0,1],|f(x)|≤ 恒成立;
④對x1 , x2∈[0,1],|f(x1)﹣f(x2)|≤ 恒成立.
其中正確的結(jié)論個數(shù)有( )
A.1個
B.2個
C.3個
D.4個
【答案】D
【解析】解:由f(1﹣x)=f(x)得函數(shù)f(x)圖象關(guān)于直線x= 對稱, 若0≤x≤ 時,f(x)= x(x﹣ ),則當 <x≤1時,f(x)= (1﹣x)( ﹣x),故①正確;
∵f(1﹣x)=﹣f(x),故函數(shù)圖象關(guān)于( ,0)對稱,
又由f(0)=f(1)=0,
故函數(shù)f(x)至少有3個零點0, ,1.故②正確;
∵當0≤x≤ 時,|f(x)|≤ x≤ ;
當 <x≤1時,則1﹣x≤ ,
|f(x)|=|f(x)﹣f(1)|≤ (1﹣x)≤ = .
∴x∈[0,1],|f(x)|≤ 恒成立,故③正確,
設(shè)x1 , x2∈[0,1],當|x1﹣x2|≤ 時,|f(x1)﹣f(x2)|≤ |x1﹣x2|≤ ,
當|x1﹣x2|> 時,|f(x1)﹣f(x2)|=|f(x1)﹣f(0)+f(1)﹣f(x2)|
≤|f(x1)﹣f(0)|+|f(1)﹣f(x2)|≤ |x1﹣0|+ |1﹣x2|
= ×1+ (1﹣x2)= ﹣ (x2﹣x1)≤ ﹣ × = .故④正確
故選D.
【考點精析】根據(jù)題目的已知條件,利用命題的真假判斷與應(yīng)用的相關(guān)知識可以得到問題的答案,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a1=1,對任意的n∈N* , 都有an>0,且nan+12﹣(2n﹣1)an+1an﹣2an2=0設(shè)M(x)表示整數(shù)x的個位數(shù)字,則M(a2017)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,平面區(qū)域D由所有滿足 (1≤λ≤a,1≤μ≤b)的點P構(gòu)成,其面積為8,則4a+b的最小值為( )
A.13
B.12
C.7
D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答
(1)已知實數(shù)a,b滿足|a|<2,|b|<2,證明:2|a+b|<|4+ab|;
(2)已知a>0,求證: ﹣ ≥a+ ﹣2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面是邊長為2的菱形,∠BAD=60°,PB=PD=2,AC∩BD=O. (Ⅰ)證明:PC⊥BD
(Ⅱ)若E是PA的中點,且△ABC與平面PAC所成的角的正切值為 ,求二面角A﹣EC﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓C: =1(a>b>0),橢圓C短軸的一個端點與長軸的一個端點的連線與圓O:x2+y2= 相切,且拋物線y2=﹣4 x的準線恰好過橢圓C的一個焦點. (Ⅰ)求橢圓C的方程;
(Ⅱ)過圓O上任意一點P作圓的切線l與橢圓C交于A,B兩點,連接PO并延長交圓O于點Q,求△ABQ面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=2,cosB= ,點D在線段BC上.
(1)若∠ADC= π,求AD的長;
(2)若BD=2DC,△ABC的面積為 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=f(x)在[0,2]上單調(diào)遞增,且函數(shù)f(x+2)是偶函數(shù),則下列結(jié)論成立的是( )
A.f(1)<f( )<f( )??
B.f( )<f(1)<f( )??
C.f( )<f( )<f(1)??
D.f( )<f(1)<f( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的公比為q(q≠1),等差數(shù)列{bn}的公差也為q,且a1+2a2=3a3 . (Ι)求q的值;
(II)若數(shù)列{bn}的首項為2,其前n項和為Tn , 當n≥2時,試比較bn與Tn的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com