已知直線l過拋物線y2=2px的焦點,且垂直于x軸,交拋物線與A,B兩點,則cos∠AOB=
-
3
5
-
3
5
分析:根據(jù)拋物線方程寫出焦點F的坐標(biāo),根據(jù)拋物線性質(zhì)可知|AF|=|BF|=p,進而求得|OA|,,最后根據(jù)余弦定理
求得cos∠AOB的值.
解答:解:由題意可得,焦點坐標(biāo)F坐標(biāo)(
p
2
,0),|AF|=|BF|=p+p=2p,
|OA|2=|OB|2=p2+(
p
2
2 =
p2
4

cos∠AOB=
|OA|2+|OB|2-|AB|2 
2|OA||OB|
=
5p2
4
+
5p2
4
-4p2
5p2
4
=-
3
5

故答案為:-
3
5
點評:本題主要考查拋物線的簡單性質(zhì),余弦定理的應(yīng)用,要理解好拋物線的定義,根據(jù)點到焦點和到準(zhǔn)線的距離相等解題,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①已知橢圓
x2
16
+
y2
8
=1
的兩個焦點為F1,F(xiàn)2,則這個橢圓上存在六個不同的點M,使得△F1MF2為直角三角形;
②已知直線l過拋物線y=2x2的焦點,且與這條拋物線交于A,B兩點,則|AB|的最小值為2;
③若過雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個焦點作它的一條漸近線的垂線,垂足為M,O為坐標(biāo)原點,則|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,則這兩個圓恰有2條公切線.
其中正確命題的序號是
 
.(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①已知橢圓
x2
16
+
y2
8
=1兩焦點F1,F(xiàn)2,則橢圓上存在六個不同點M,使得△F1MF2為直角三角形;
②已知直線l過拋物線y=2x2的焦點,且與這條拋物線交于A,B兩點,則|AB|的最小值為2;
③若過雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一個焦點作它的一條漸近線的垂線,垂足為M,O為坐標(biāo)原點,則|OM|=a;
④根據(jù)氣象記錄,知道荊門和襄陽兩地一年中雨天所占的概率分別為20%和18%,兩地同時下雨的概率為12%,則荊門為雨天時,襄陽也為雨天的概率是60%.
其中正確命題的序號是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出下列命題:
①已知橢圓
x2
16
+
y2
8
=1
的兩個焦點為F1,F(xiàn)2,則這個橢圓上存在六個不同的點M,使得△F1MF2為直角三角形;
②已知直線l過拋物線y=2x2的焦點,且與這條拋物線交于A,B兩點,則|AB|的最小值為2;
③若過雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個焦點作它的一條漸近線的垂線,垂足為M,O為坐標(biāo)原點,則|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,則這兩個圓恰有2條公切線.
其中正確命題的序號是______.(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省襄陽四中、荊州中學(xué)、龍泉中學(xué)聯(lián)考高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

給出下列命題:
①已知橢圓=1兩焦點F1,F(xiàn)2,則橢圓上存在六個不同點M,使得△F1MF2為直角三角形;
②已知直線l過拋物線y=2x2的焦點,且與這條拋物線交于A,B兩點,則|AB|的最小值為2;
③若過雙曲線C:=1(a>0,b>0)的一個焦點作它的一條漸近線的垂線,垂足為M,O為坐標(biāo)原點,則|OM|=a;
④根據(jù)氣象記錄,知道荊門和襄陽兩地一年中雨天所占的概率分別為20%和18%,兩地同時下雨的概率為12%,則荊門為雨天時,襄陽也為雨天的概率是60%.
其中正確命題的序號是( )
A.①③④
B.①②③
C.③④
D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年安徽省巢湖市高三(上)質(zhì)量檢測數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

給出下列命題:
①已知橢圓的兩個焦點為F1,F(xiàn)2,則這個橢圓上存在六個不同的點M,使得△F1MF2為直角三角形;
②已知直線l過拋物線y=2x2的焦點,且與這條拋物線交于A,B兩點,則|AB|的最小值為2;
③若過雙曲線C:的一個焦點作它的一條漸近線的垂線,垂足為M,O為坐標(biāo)原點,則|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,則這兩個圓恰有2條公切線.
其中正確命題的序號是    .(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

同步練習(xí)冊答案