下列各數(shù)中最小的數(shù)是(  )
A、85(9)
B、210(6)
C、1000(4)
D、111111(2)
考點:進位制
專題:算法和程序框圖
分析:將四個答案中的數(shù)都轉(zhuǎn)化為十進制的數(shù),進而可以比較其大。
解答: 解:85(9)=8×9+5=77,
210(6)=2×62+1×6=78,
1000(4)=1×43=64,
111111(2)=1×26-1=63,
故最小的數(shù)是111111(2)
故選:D
點評:本題考查的知識點是不同進制數(shù)之間的轉(zhuǎn)換,解答的關鍵是熟練掌握不同進制之間數(shù)的轉(zhuǎn)化規(guī)則.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知m、n是兩條不重合的直線,α、β、γ是三個兩兩不重合的平面,給出下列四個命題:
①若m⊥α,m⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若m?α,n?β,m∥n,則α∥β;
④若m、n是異面直線,m?α,m∥β,n?β,n∥α,則α∥β.
其中正確的是( 。
A、①和②B、①和③
C、③和④D、①和④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若點(a,4)在函數(shù)y=2x的圖象上,則cos
3
的值為( 。
A、-
1
2
B、
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖;圓O的割線PA過圓心O交圓于另一點B,弦CD交OB于點E,且△COE~△POE,PB=OA=2,則PE的長等于( 。
A、3
B、4
C、3
2
D、
7
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四個命題:
①“?x∈R,x2-x+1≤0”的否定;
②“若x2+x-6≥0,則x>2”的否命題;
③△ABC中“A>30°”是“sinA
1
2
”的充分不必要條件;
④“函數(shù)f(x)=tan(x+φ)為奇函數(shù)”的充要條件是“φ=kπ(k∈Z)”.
其中真命題個數(shù)( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一個算法的程序框圖如圖所示,當輸出的結(jié)果為0時,輸入的x的值為( 。
A、1B、-2
C、1或-1D、1或-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
exx≤0
lnx,x>0
,若對任意給定的a∈(1,+∞),都存在唯一的x∈R,滿足f(f(x))=ma2+2m2a,則正實數(shù)m的最小值是( 。
A、
1
2
B、1
C、
3
2
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果f(x)為偶函數(shù),滿足在區(qū)間[2,3]上是增函數(shù)且最小值是4,那么f(x)在區(qū)間[-3,-2]上是(  )
A、增函數(shù)且最小值是-4
B、增函數(shù)且最大值是4
C、減函數(shù)且最小值是4
D、減函數(shù)且最大值是-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:(1)log2.56.25+lg0.001+ln
e
+2-1+log23
     (2)(2
1
4
 
1
2
-(-2012)0-(3
3
8
 -
2
3
+(
3
2
-2

查看答案和解析>>

同步練習冊答案