【題目】近年來,我國許多省市霧霾天氣頻發(fā),為增強市民的環(huán)境保護意識,某市面向全市征召n名義務宣傳志愿者,成立環(huán)境保護宣傳組織現(xiàn)把該組織的成員按年齡分成5組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示,已知第2組有70人.

(1)求該組織的人數(shù).

(2)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加某社區(qū)的宣傳活動,然后在這6名志愿者中隨機抽取2名志愿者介紹宣傳經(jīng)驗,求第3組至少有一名志愿者被抽中的概率.

【答案】(1)人;(2).

【解析】

根據(jù)頻數(shù)頻率樣本容量,頻率對應矩形面積,構(gòu)造關于n的方程,解方程可得該組織的人數(shù);

先計算出第3,4,5組中每組的人數(shù),選求出這6名志愿者中隨機抽取2名志愿者的基本事件總數(shù)和第3組至少有一名志愿者被抽中的基本事件個數(shù),代入古典概型概率計算公式,可得答案.

由題意:第2組的人數(shù):,得到:,

故該組織有200人

第3組的人數(shù)為,

第4組的人數(shù)為

第5組的人數(shù)為

第3,4,5組共有60名志愿者,

利用分層抽樣的方法在60名志愿者中抽取6名志愿者,每組抽取的人數(shù)分別為:

第3組:;第4組:第5組:

應從第3,4,5組中分別抽取3人,2人,1人

記第3組的3名志愿者為,,第4組的2名志愿者為,第5組的1名志愿者為

則從6名志愿者中抽取2名志愿者有:

,,,,

,,,,

,,,,共有15種.

其中第3組的3名志愿者,,至少有一名志愿者被抽中的有:

,,,,,

,,,,共有12種,

則第3組至少有一名志愿者被抽中的概率為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,若存在x1 , x2 , 當0≤x1<x2<2時,f(x1)=f(x2),則x1f(x2)﹣f(x2)的取值范圍為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面四邊形ABCD內(nèi)接于圓O,AC是圓O的一條直徑,PA⊥平面ABCD,PA=AC=2,E是PC的中點,∠DAC=∠AOB

(1)求證:BE∥平面PAD;
(2)若二面角P﹣CD﹣A的正切值為2,求直線PB與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體ABCDA1B1C1D1中,M、N、E、F分別是棱A1B1A1D1、B1C1、C1D1的中點.

(1)求MNAC所成角,并說明理由.

(2)求證:平面AMN∥平面EFDB

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)若分別是先后拋擲一枚骰子得到的點數(shù),求對任意, 恒成立的概率;

(2)若是從區(qū)間任取的一個數(shù), 是從任取的一個數(shù)求函數(shù)的圖像與軸有交點的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線y2=8x的焦點為F,過點F作直線l與拋物線分別交于A,B兩點,若點M滿足 = + ),過M作y軸的垂線與拋物線交于點P,若|PF|=4,則M點的橫坐標為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2012年中華人民共和國環(huán)境保護部批準《環(huán)境空氣質(zhì)量標準》為國家環(huán)境質(zhì)量標準,該標準增設和調(diào)整了顆粒物、二氧化氮、鉛、笨等的濃度限值,并從2016年1月1日起在全國實施.空氣質(zhì)量的好壞由空氣質(zhì)量指數(shù)確定,空氣質(zhì)量指數(shù)越高,代表空氣污染越嚴重,某市對市轄的某兩個區(qū)加大了對空氣質(zhì)量的治理力度,從2015年11月1日起監(jiān)測了100天的空氣質(zhì)量指數(shù),并按照空氣質(zhì)量指數(shù)劃分為:指標小于或等于115為通過,并引進項目投資.大于115為未通過,并進行治理.現(xiàn)統(tǒng)計如下.

空氣質(zhì)量指數(shù)

(0,35]

[35,75]

(75,115]

(115,150]

(150,250]

>250

空氣質(zhì)量類別

優(yōu)

輕度污染

中度污染

重度污染

嚴重污染

甲區(qū)天數(shù)

13

20

42

20

3

2

乙區(qū)天數(shù)

8

32

40

16

2

2


(1)以頻率值作為概率值,求甲區(qū)和乙區(qū)通過監(jiān)測的概率;
(2)對于甲區(qū),若通過,引進項目可增加稅收40(百萬元),若沒通過監(jiān)測,則治理花費5(百萬元);對于乙,若通過,引進項目可增加稅收50(百萬元),若沒通過監(jiān)測,則治理花費10(百萬元)..在(1)的前提下,記X為通過監(jiān)測,引進項目增加的稅收總額,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2﹣2alnx﹣2ax=0有唯一解,則實數(shù)a的值為( )
A.1
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某程序框圖如圖所示,若輸出i的值為63,則判斷框內(nèi)可填入的條件是(

A.S>27
B.S≤27
C.S≥26
D.S<26

查看答案和解析>>

同步練習冊答案