【題目】在銳角三角形ABC中,角A,B,C的對邊分別為a,b,c,已知sinA= ,tan(A﹣B)=﹣ .
(1)求tanB的值;
(2)若b=5,求c.
【答案】
(1)解:銳角三角形ABC中,sinA= ,
∴cosA= ,tanA= ;
又tan(A﹣B)= = =﹣ ,
∴解得tanB=2
(2)解:∵tanB=2,∴ =2,sinB=2cosB;
∴sin2B+cos2B=4cos2B+cos2B=5cos2B=1,
∴cosB= ,sinB= ;
∴sinC=sin[π﹣(A+B)]
=sin(A+B)
=sinAcosB+cosAsinB
= × + ×
= ;
又b=5,且 = ,
∴c= = = .
【解析】(1)根據(jù)同角的三角函數(shù)關(guān)系求出tanA,再利用兩角差的正切公式,即可求出tanB;(2)求出sinB與cosB,計算sinC的值,利用正弦定理即可求出c的值.
【考點(diǎn)精析】關(guān)于本題考查的兩角和與差的正切公式和正弦定理的定義,需要了解兩角和與差的正切公式:;正弦定理:才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某海上養(yǎng)殖基地A,接到氣象部門預(yù)報,位于基地南偏東60°方向相距20(+1)海里的海面上有一臺風(fēng)中心,影響半徑為20海里,正以每小時10海里的速度沿某一方向勻速直線前進(jìn),預(yù)計臺風(fēng)中心在基地東北方向時對基地的影響最強(qiáng)烈且(+1)小時后開始影響基地持續(xù)2小時,求臺風(fēng)移動的方向.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列四個命題:
①“已知函數(shù)y=f(x),x∈ D,若D關(guān)于原點(diǎn)對稱,則函數(shù)y=f(x),x∈ D為奇函數(shù)”的逆命題;
②“對應(yīng)邊平行的兩角相等”的否命題;
③“若a≠0,則方程ax+b=0有實根”的逆否命題;
④“若A∪ B=B,則B≠A”的逆否命題.
其中的真命題是( )
A. ①② B. ②③
C. ①③ D. ③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn=10n﹣n2(n∈N*),又bn=|an|(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線、橢圓都經(jīng)過點(diǎn)M(1,2),它們在x軸上有共同焦點(diǎn),橢圓的對稱軸是坐標(biāo)軸,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn).則橢圓的長軸長為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,已知橢圓C: =1(a>b>0)的離心率e= ,左頂點(diǎn)為A(﹣4,0),過點(diǎn)A作斜率為k(k≠0)的直線l交橢圓C于點(diǎn)D,交y軸于點(diǎn)E.
(1)求橢圓C的方程;
(2)已知P為AD的中點(diǎn),是否存在定點(diǎn)Q,對于任意的k(k≠0)都有OP⊥EQ,若存在,求出點(diǎn)Q的坐標(biāo);若不存在說明理由;
(3)若過O點(diǎn)作直線l的平行線交橢圓C于點(diǎn)M,求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個商場經(jīng)銷某種商品,根據(jù)以往資料統(tǒng)計,每位顧客采用的分期付款次數(shù)的分布列為:
1 | 2 | 3 | 4 | 5 | |
0.4 | 0.2 | 0.2 | 0.1 | 0.1 |
商場經(jīng)銷一件該商品,采用1期付款,其利潤為200元;采用2期或3期付款,其利潤為250元;采用4期或5期付款,其利潤為300元.表示經(jīng)銷一件該商品的利潤.
(1)求購買該商品的3位顧客中,恰有2位采用1期付款的概率;
(2)求的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項和為Sn , 已知a5=﹣3,S10=﹣40.
(1)求數(shù)列{an}的通項公式;
(2)若從數(shù)列{an}中依次取出第2,4,8,…,2n , …項,按原來的順序排成一個新數(shù)列{bn},求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com