某聯(lián)歡晚會(huì)舉行抽獎(jiǎng)活動(dòng),舉辦方設(shè)置了甲、乙兩種抽獎(jiǎng)方案,方案甲的中獎(jiǎng)率為,中獎(jiǎng)可以獲得2分;方案乙的中獎(jiǎng)率為,中獎(jiǎng)可以獲得3分;未中獎(jiǎng)則不得分.每人有且只有一次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)中獎(jiǎng)與否互不影響,晚會(huì)結(jié)束后憑分?jǐn)?shù)兌換獎(jiǎng)品.

(Ⅰ)張三選擇方案甲抽獎(jiǎng),李四選擇方案乙抽獎(jiǎng),記他們的累計(jì)得分為X,若X≤3的概率為,求;

(Ⅱ)若張三、李四兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎(jiǎng),問(wèn):他們選擇何種方案抽獎(jiǎng),累計(jì)得分的數(shù)學(xué)期望較大?


【解析】(Ⅰ)由已知得,張三中獎(jiǎng)的概率為,李四中獎(jiǎng)的概率為,且兩人中獎(jiǎng)與否互不影響.

記“這2人的累計(jì)得分X≤3”的事件為A,

則事件A的對(duì)立事件為“X=5”,

因?yàn)镻(X=5)=×,所以P (A)=1-P(X=5)=1-×=,所以  .……6分

(Ⅱ)設(shè)張三、李四都選擇方案甲抽獎(jiǎng)中獎(jiǎng)次數(shù)為X1,都選擇方案乙抽獎(jiǎng)中獎(jiǎng)次數(shù)為X2,

則這兩人選擇方案甲抽獎(jiǎng)累計(jì)得分的數(shù)學(xué)期望為E(2X1),

選擇方案乙抽獎(jiǎng)累計(jì)得分的數(shù)學(xué)期望為E(3X2).

由已知可得,X1~B,X2~B

所以E(X1)=2×,E(X2)=2×,

從而E(2X1)=2E(X1)=,E(3X2)=3E(X2)=6.

                                                            ……12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知的展開(kāi)式的奇數(shù)項(xiàng)二項(xiàng)式系數(shù)和是16,求的展開(kāi)式中:

(1)二項(xiàng)式系數(shù)最大的項(xiàng);(2)系數(shù)的絕對(duì)值最大的項(xiàng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


 若,且,則__________________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


設(shè)變量x,y滿足約束條件,則z=x-3y的最大值為

A.              B.4            C.3            D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


設(shè)點(diǎn)P是雙曲線與圓x2+y2=a2+b2在第一象限的交點(diǎn),其中F1,F2分別是雙曲線的左、右焦點(diǎn),且,則雙曲線的離心率為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知函數(shù)是奇函數(shù),且時(shí),,則=

     (A)2            (B)-2        (C)             (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


設(shè)函數(shù)的最小正周期為,則

  (A)在單調(diào)遞減                       (B)在單調(diào)遞減

  (C)在單調(diào)遞增                       (D)在單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


運(yùn)行如圖所示的程序框圖,則輸出的結(jié)果

A.1007        B.1008     C.2013          

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


,則在角終邊上的點(diǎn)是                         (    )

                        

查看答案和解析>>

同步練習(xí)冊(cè)答案