【題目】為響應(yīng)市政府提出的以新舊動(dòng)能轉(zhuǎn)換為主題的發(fā)展戰(zhàn)略,某公司花費(fèi)100萬元成本購買了1套新設(shè)備用于擴(kuò)大生產(chǎn),預(yù)計(jì)該設(shè)備每年收入100萬元,第一年該設(shè)備的各種消耗成本為8萬元,且從第二年開始每年比上一年消耗成本增加8萬元.
(1)求該設(shè)備使用x年的總利潤(rùn)y(萬元)與使用年數(shù)x(x∈N*)的函數(shù)關(guān)系式(總利潤(rùn)=總收入﹣總成本);
(2)這套設(shè)備使用多少年,可使年平均利潤(rùn)最大?并求出年平均利潤(rùn)的最大值.
【答案】(1);(2)這套設(shè)備使用5年,可使年平均利潤(rùn)最大,最大利潤(rùn)為56萬元
【解析】
(1)求出年的總收入及消耗等總費(fèi)用,可得總利潤(rùn)與使用年數(shù)的函數(shù)關(guān)系;
(2)年平均利潤(rùn)為,然后利用基本不等式求最值.
(1)由題意知,x年總收入為100x萬元,
x年消耗成本總費(fèi)用為8(1+2+3+…+x)=4x(1+x)萬元,
∴總利潤(rùn)y=100x﹣4x(x+1)﹣100,x∈N*,即y=﹣4x2+96x﹣100,x∈N*;
(2)年平均利潤(rùn)為,∵x>0,
∴4(x)+9656,
當(dāng)且僅當(dāng)x,即x=5時(shí)取“=”號(hào).
∴當(dāng)設(shè)備使用5年時(shí),年平均利潤(rùn)最大.
答:這套設(shè)備使用5年,可使年平均利潤(rùn)最大,最大利潤(rùn)為56萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,,,是的中點(diǎn),是的中點(diǎn).
(1)求異面直線與所成角的大;
(2)若直三棱柱的體積為,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為F,F關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P,過F作軸的垂線交拋物線于M,N兩點(diǎn),給出下列三個(gè)結(jié)論:
①必為直角三角形;
②直線必與拋物線相切;
③的面積為.其中正確的結(jié)論是___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的是( )
A. 若直線平面,直線平面,則直線不一定平行于直線
B. 若平面不垂直于平面,則內(nèi)一定不存在直線垂直于平面
C. 若平面平面,則內(nèi)一定不存在直線平行于平面
D. 若平面平面,平面平面,,則一定垂直于平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面四邊形中(圖1),為的中點(diǎn),,且,現(xiàn)將此平面四邊形沿折起,使得二面角為直二面角,得到一個(gè)多面體,為平面內(nèi)一點(diǎn),且為正方形(圖2),分別為的中點(diǎn).
(1)求證:平面//平面;
(2)在線段上是否存在一點(diǎn),使得平面與平面所成二面角的余弦值為?若存在,求出線段的長(zhǎng),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:過點(diǎn),且它的焦距是短軸長(zhǎng)的倍.
(1)求橢圓的方程.
(2)若,是橢圓上的兩個(gè)動(dòng)點(diǎn)(,兩點(diǎn)不關(guān)于軸對(duì)稱),為坐標(biāo)原點(diǎn),,的斜率分別為,,問是否存在非零常數(shù),使當(dāng)時(shí),的面積為定值?若存在,求的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代數(shù)學(xué)家祖暅提出原理:“冪勢(shì)既同,則積不容異”.其中“冪”是截面積,“勢(shì)”是幾何體的高.該原理的意思是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被任一平行于這兩個(gè)平行平面的平面所截,若所截的兩個(gè)截面的面積恒相等,則這兩個(gè)幾何體的體積相等.如圖,在空間直角坐標(biāo)系中的平面內(nèi),若函數(shù)的圖象與軸圍成一個(gè)封閉的區(qū)域,將區(qū)域沿軸的正方向平移8個(gè)單位長(zhǎng)度,得到幾何體如圖一,現(xiàn)有一個(gè)與之等高的圓柱如圖二,其底面積與區(qū)域的面積相等,則此圓柱的體積為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的前n項(xiàng)和為,,公差為
若,求數(shù)列的通項(xiàng)公式;
是否存在d,n使成立?若存在,試找出所有滿足條件的d,n的值,并求出數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com