6.下列四個命題中真命題為( 。
A.lg(x2+1)≥0B.5≤2C.若x2=4,則x=2D.若x<2,則$\frac{1}{x}$>$\frac{1}{2}$

分析 根據(jù)對數(shù)函數(shù)的圖象和性質(zhì),可判斷A;根據(jù)5>2,可判斷B;將x2=4得,x=±2,可判斷C;根據(jù)$\frac{1}{x}$>$\frac{1}{2}$?0<x<2,可判斷D.

解答 解:x2+1≥1恒成立,故lg(x2+1)≥0恒成立,故A正確;
5≤2恒不成立,故B錯誤;
若x2=4,則x=±2,故C錯誤;
若0<x<2,則$\frac{1}{x}$>$\frac{1}{2}$,但x<0時,$\frac{1}{x}$<$\frac{1}{2}$,故D錯誤;
故選:A

點評 本題以命題的真假判斷與應(yīng)用為載體,考查了對數(shù)函數(shù)的圖象和性質(zhì),不等式的基本性質(zhì)等知識點,難度基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積等于( 。
A.40cm3B.30cm3C.20cm3D.10cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的離心率為$\frac{\sqrt{3}}{2}$,且點(-$\sqrt{3}$,$\frac{1}{2}$)在橢圓C上.
(1)求橢圓C的方程;
(2)直線l與橢圓C交于點P,Q,線段PQ的中點為H,O為坐標原點且OH=1,求△POQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)x,y∈[0,1],則滿足y>$\sqrt{1-{x}^{2}}$的概率為( 。
A.1-$\frac{π}{4}$B.$\frac{1}{2}$C.$\frac{π}{4}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某航運公司有6艘可運載30噸貨物的A型貨船與5艘可運載50噸貨物的B型貨船,現(xiàn)有每天至少運載900噸貨物的任務(wù),已知每艘貨船每天往返的次數(shù)為A型貨船4次和B型貨船3次,每艘貨船每天往返的成本費為A型貨船160元,B型貨船252元,那么,每天派出A型貨船和B型貨船各多少艘,公司所花的成本費最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且“拐點”就是對稱中心.設(shè)函數(shù)g(x)=2x3-3x2+$\frac{3}{2}$,則g($\frac{1}{100}$)+g($\frac{2}{100}$)+…+g($\frac{99}{100}$)=( 。
A.100B.99C.50D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知定義在R上的函數(shù)f(x)滿足f(x)=f(-x),且當x∈(-∞,0)時,f(x)+xf'(x)<0成立,若a=(20.1)•f(20.1),b=(ln2)•f(ln2),$c=({log_2}\frac{1}{8})•f({log_2}\frac{1}{8})$,則a,b,c的大小關(guān)系是(  )
A.a>b>cB.c>b>aC.c<a<bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)$f(x)=\frac{1}{2}{x^2}-(a+1)x+alnx,a>0$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)討論函數(shù)f(x)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在區(qū)間[0,1]上任取兩個實數(shù)a,b,則函數(shù)f(x)=x2+ax+b2無零點的概率為( 。
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊答案