14.如圖,在△ABC中,∠B=45°,D是BC邊上一點,AC=7,AD=5,DC=3,則AB的長為(  )
A.$\frac{\sqrt{6}}{15}$B.5C.$\frac{5\sqrt{6}}{2}$D.5$\sqrt{6}$

分析 利用余弦定理,可求求∠ADC的大;在△ABD中,利用正弦定理,可求AB的長.

解答 解:∵AD=5,AC=7,DC=3,
∴cos∠ADC=$\frac{25+9-49}{2×5×3}$=$-\frac{1}{2}$,∴∠ADC=120°  
在△ABD中,∠ADB=60°,AD=5,B=45°
由正弦定理:$\frac{AB}{sin60°}=\frac{AD}{sin45°}$,得AB=$\frac{5×\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}}$$\frac{5\sqrt{6}}{2}$ …(6分)

點評 本題主要考查余弦定理和正弦定理的應(yīng)用,在解決問題的過程中要靈活運用正弦定理和余弦定理.屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,橢圓C1:x2+$\frac{{y}^{2}}{^{2}}$=1(b>0)的左、右頂點分別為A,B,點P為雙曲線C2:x2-$\frac{{y}^{2}}{^{2}}$=1在第一象限內(nèi)的圖象上一點,直線AP,BP與橢圓C1分別交于C,D兩點.C是AP的中點.
(1)求點P,C的橫坐標(biāo);
(2)若直線CD過橢圓C1的右焦點,求橢圓C1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若log2(ax2-2x+2)>2在x∈[1,2]上恒成立,則實數(shù)a的取值范圍為(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)f(x)=(x+a)lnx-ax+1
(1)a=0時,求f(x)的單調(diào)區(qū)間;
(2)若a≥1,對任意的x∈[$\frac{1}{2}$,1],求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知Sn是數(shù)列{an}的前n項和,a1=1,a2=2,a3=3,數(shù)列{an+an+1+an+2}是公差為2的等差數(shù)列,則S25=( 。
A.232B.233C.234D.235

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.計算:
(Ⅰ)[(-2)2]${\;}^{\frac{1}{2}}$-(-$\frac{1}{8}$)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(1.5)-2+$\sqrt{(1-\sqrt{2})^{2}}$
(Ⅱ)log3$\sqrt{27}$+lg25+lg4+7log72+lg1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.方程$\left\{\begin{array}{l}x+y=3\\ 2x-3y=1\end{array}\right.$解集為{(2,1)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.等比數(shù)列{an}滿足a1=3,a1+a3+a5=21,則a2a4=( 。
A.6B.9C.36D.81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)=ax3+2bx-1且f(-1)=3,則f(1)=-5.

查看答案和解析>>

同步練習(xí)冊答案