分析 (1)曲線x2+y2+2x-6y+1=0上有兩點(diǎn)P、Q,滿足關(guān)于直線x+my+4=0對(duì)稱,說(shuō)明曲線是圓,直線過(guò)圓心,易求m的值;
(2)設(shè)P(x1,y1)、Q(x2,y2),PQ方程為y=-x+b.聯(lián)立方程組,結(jié)合韋達(dá)定理,以及$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0. 求得k的方程,然后求直線PQ的方程.
解答 解:(1)曲線方程為(x+1)2+(y-3)2=9表示圓心為(-1,3),半徑為3的圓.
∵點(diǎn)P、Q在圓上且關(guān)于直線x+my+4=0對(duì)稱,
∴圓心(-1,3)在直線上.代入得m=-1.
(2)∵直線PQ與直線y=x+4垂直,
∴設(shè)P(x1,y1)、Q(x2,y2),PQ方程為y=-x+b.
將直線y=-x+b代入圓方程,得2x2+2(4-b)x+b2-6b+1=0.
△=4(4-b)2-4×2×(b2-6b+1)>0,得2-3$\sqrt{2}$<b<2+3$\sqrt{2}$.
由韋達(dá)定理得x1+x2=-(4-b),x1•x2=$\frac{^{2}-6b+1}{2}$.
y1•y2=b2-b(x1+x2)+x1•x2=$\frac{^{2}-6b+1}{2}$+4b.
∵$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,∴x1x2+y1y2=0,
即b2-6b+1+4b=0.
解得b=1∈(2-3$\sqrt{2}$,2+3$\sqrt{2}$).
∴所求的直線方程為y=-x+1.
點(diǎn)評(píng) 本題考查直線與圓的方程的應(yīng)用,直線的一般式方程,考查函數(shù)與方程的思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=x,g(x)=x2 | B. | f(x)=x,g(x)=$\root{3}{x^3}$ | C. | f(x)=x,g(x)=$\sqrt{x}$ | D. | f(x)=$\sqrt{x^2}g(x)=\sqrt{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {a|a≤0} | B. | {a|0<a≤4} | C. | {a|a≥4} | D. | {a|0<a<4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com