已知函數(shù)(),.
(Ⅰ)若曲線與在它們的交點(diǎn)處具有公共切線,求的值;
(Ⅱ)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值.
(Ⅰ)
(Ⅱ)(1)當(dāng)時(shí),
(2)當(dāng)時(shí),
解析試題分析:(Ⅰ)
4分
(Ⅱ)令
在,上單調(diào)遞增,在上單調(diào)遞減
又
(1)當(dāng)即時(shí),
(2)當(dāng)即時(shí),
13分
考點(diǎn):本題主要考查導(dǎo)數(shù)的幾何意義,直線方程,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值。
點(diǎn)評(píng):中檔題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問(wèn)題,利用曲線切線的斜率,等于函數(shù)在切點(diǎn)的導(dǎo)函數(shù)值,建立a,b,c的方程組,達(dá)到解題目的。通過(guò)研究函數(shù)的單調(diào)性,明確了最值情況。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某單位設(shè)計(jì)的兩種密封玻璃窗如圖所示:圖1是單層玻璃,厚度為8 mm;圖2是雙層中空玻璃,厚度均為4 mm,中間留有厚度為的空氣隔層.根據(jù)熱傳導(dǎo)知識(shí),對(duì)于厚度為的均勻介質(zhì),兩側(cè)的溫度差為,單位時(shí)間內(nèi),在單位面積上通過(guò)的熱量,其中為熱傳導(dǎo)系數(shù).假定單位時(shí)間內(nèi),在單位面積上通過(guò)每一層玻璃及空氣隔層的熱量相等.(注:玻璃的熱傳導(dǎo)系數(shù)為,空氣的熱傳導(dǎo)系數(shù)為.)
(1)設(shè)室內(nèi),室外溫度均分別為,,內(nèi)層玻璃外側(cè)溫度為,外層玻璃內(nèi)側(cè)溫度為,且.試分別求出單層玻璃和雙層中空玻璃單位時(shí)間內(nèi),在單位面積上通過(guò)的熱量(結(jié)果用,及表示);
(2)為使雙層中空玻璃單位時(shí)間內(nèi),在單位面積上通過(guò)的熱量只有單層玻璃的4%,應(yīng)如何設(shè)計(jì)的大小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的房頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元,該建筑物每年的能源消耗費(fèi)用為C(單位:萬(wàn)元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=(0x10),若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元。設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。
(1)求k的值及f(x)的表達(dá)式;
(2)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
作為紹興市2013年5.1勞動(dòng)節(jié)系列活動(dòng)之一的花卉展在鏡湖濕地公園舉行.現(xiàn)有一占地1800平方米的矩形地塊,中間三個(gè)矩形設(shè)計(jì)為花圃(如圖),種植有不同品種的觀賞花卉,周圍則均是寬為1米的賞花小徑,設(shè)花圃占地面積為平方米,矩形一邊的長(zhǎng)為米(如圖所示)
(1)試將表示為的函數(shù);
(2)問(wèn)應(yīng)該如何設(shè)計(jì)矩形地塊的邊長(zhǎng),使花圃占地面積取得最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在區(qū)間[-1,1]上,不等式f(x)>2x+m恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時(shí),可全部租出。當(dāng)每輛車的月租金每增加50元時(shí),未租出的車將會(huì)增加一輛。租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元。
(1)當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?
(2)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某工廠生產(chǎn)一種產(chǎn)品的原材料費(fèi)為每件40元,若用x表示該廠生產(chǎn)這種產(chǎn)品的總件數(shù),則電力與機(jī)器保養(yǎng)等費(fèi)用為每件0.05x元,又該廠職工工資固定支出12500元。
(1)把每件產(chǎn)品的成本費(fèi)P(x)(元)表示成產(chǎn)品件數(shù)x的函數(shù),并求每件產(chǎn)品的最低成本費(fèi);
(2)如果該廠生產(chǎn)的這種產(chǎn)品的數(shù)量x不超過(guò)3000件,且產(chǎn)品能全部銷售,根據(jù)市場(chǎng)調(diào)查:每件產(chǎn)品的銷售價(jià)Q(x)與產(chǎn)品件數(shù)x有如下關(guān)系:,試問(wèn)生產(chǎn)多少件產(chǎn)品,總利潤(rùn)最高?(總利潤(rùn)=總銷售額-總的成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
一邊長(zhǎng)為的正方形鐵片,鐵片的四角截去四個(gè)邊長(zhǎng)均為的小正方形,然后做成一個(gè)無(wú)蓋方盒。
(1)試把方盒的容積表示為的函數(shù);
(2)多大時(shí),方盒的容積最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com