精英家教網 > 高中數學 > 題目詳情
已知橢圓的左、右焦點分別為、,P為橢圓 上任意一點,且的最小值為.
(1)求橢圓的方程;
(2)動圓與橢圓相交于A、B、C、D四點,當為何值時,矩形ABCD的面積取得最大值?并求出其最大面積.
(1);(2)當時,矩形ABCD的面積最大,最大面積為.

試題分析:(1)由于(定值)這個條件并結合余弦定理以及的最小值為這個條件可以求出的值,并由已知條件中的值可以求出,并最終求出橢圓的方程;(2)先設出、、中其中一個點的坐標,然后根據這四點之間的相互對稱性將四邊形的面積用該點的坐標進行表示,結合這一條件將面積轉化為其中一個變量的二次函數,利用二次函數的求最值的思想求出四邊形面積的最大值,并可以求出對應的值.
試題解析:(1)因為P是橢圓上一點,所以.
在△中,,由余弦定理得
.
因為,當且僅當時等號成立.
因為,所以.
因為的最小值為,所以,解得.
,所以.所以橢圓C的方程為.
(2)設,則矩形ABCD的面積.
因為,所以.
所以.
因為,所以當時,取得最大值24.
此時.
所以當時,矩形ABCD的面積最大,最大面積為.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)若處取得極值,求的值;
(2)求的單調區(qū)間;
(3)若,函數,若對于,總存在使得,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,過右焦點F的直線l與C相交于A、B兩點,當l的斜率為1時,坐標原點O到l的距離為
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在點P,使得當l繞F轉到某一位置時,有成立?若存在,求出所有的P的坐標與l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

橢圓的左、右焦點分別為,且橢圓過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點作不與軸垂直的直線交該橢圓于兩點,為橢圓的左頂點,試判斷的大小是否為定值,并說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知分別是橢圓: 的左、右焦點,點在直線上,線段的垂直平分線經過點.直線與橢圓交于不同的兩點、,且橢圓上存在點,使,其中是坐標原點,是實數.
(Ⅰ)求的取值范圍;
(Ⅱ)當取何值時,的面積最大?最大面積等于多少?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的離心率為,直線:與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓的左焦點為,右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于點,
線段垂直平分線交于點,求點的軌跡的方程;
(Ⅲ)設軸交于點,不同的兩點上,且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知△ABC的周長為20,且頂點B(0,-4),C(0,4),則頂點A的軌跡方程是(    )
A.(x≠0)B.(x≠0)
C.(x≠0)D.(x≠0)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖,是橢圓在第一象限上的動點,是橢圓的焦點,的平分線上的一點,且,則的取值范圍是         .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

橢圓的焦點為,點在橢圓上,且線段的中點恰好在軸上,,則            .

查看答案和解析>>

同步練習冊答案