13.定義在R上的函數(shù)f(x)滿足f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(15-x),x≤0}\\{f(x-2),x>0}\end{array}\right.$,則f(3)=4;f(f(2015))=log215.

分析 利用抽象函數(shù)求出周期,通過(guò)分段函數(shù)的解析式,化簡(jiǎn)所求表達(dá)式的自變量為 具體函數(shù)的定義域的值,然后求解即可.

解答 解:定義在R上的函數(shù)f(x)滿足f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(15-x),x≤0}\\{f(x-2),x>0}\end{array}\right.$,
x>0時(shí),函數(shù)的周期為:2.
所以f(3)=f(1)=f(-1)=log216=4.
f(f(2015))=f(f(-1))=f(4)=f(0)=log215.
故答案為:4;log215.

點(diǎn)評(píng) 本題考查抽象函數(shù)的應(yīng)用,分段函數(shù)函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列命題中,不適合使用使用數(shù)學(xué)歸納法證明的是( 。
A.{an}是以q(q≠1)為公比的等比數(shù)列,則a1+a2+…+an=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$
B.若n∈N*,則cos$\frac{α}{2}$•cos$\frac{α}{{2}^{2}}$•cos$\frac{α}{{2}^{3}}$…cos$\frac{α}{{2}^{n}}$=$\frac{sinα}{{2}^{n}sin\frac{α}{{2}^{n}}}$
C.若n∈N*,則n2+3n+1是質(zhì)數(shù)
D.(n2-1)+22(n2-22)+…+n2(n2-n2)=$\frac{{n}^{2}(n-1)(n+1)}{4}$對(duì)任何n∈N*都成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.計(jì)算2$\sqrt{3}$×$\root{3}{1.5}$×$\root{6}{12}$的值為( 。
A.$\sqrt{6}$B.$\root{2}{6}$C.6D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列說(shuō)法中,正確的是( 。
A.$\frac{y-{y}_{1}}{x-{x}_{1}}$=k為過(guò)點(diǎn)P(x1,y1)且斜率為k的直線方程
B.過(guò)y軸上一點(diǎn)(0,b)得直線方程可以表示為y=kx+b
C.若直線在x軸、y軸的截距分別為a與b,則該直線方程為$\frac{x}{a}$+$\frac{y}$=1
D.方程(x2-x1)(y-y1)=(y2-y1)(x-x1)表示過(guò)兩點(diǎn)P(x1,y1)、Q(x2,y2)一條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.直線l在x軸、y軸上的截距的絕對(duì)值相等,且過(guò)點(diǎn)P(2,3),則直線l的方程為3x-2y=0,x+y-5=0,x-y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知等比數(shù)列{an}中,a2=$\frac{1}{3}$,公比q=$\frac{1}{3}$,Sn為{an}的前n項(xiàng)和.
(1)求an和Sn
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列bn的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.與雙曲線3x2-y2=3的焦點(diǎn)相同且離心率互為倒數(shù)的橢圓方程為( 。
A.x2+$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{3}+{y}^{2}=1$C.$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{16}=1$D.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知全集U={x|x-2≥0或x-1≤0},A={x|x<1或x>3},B={x|x≤1或x>2},求A∩B,A∪B,(∁UA)∩(∁UB),(∁UA)∪(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知a=30.2,b=0.2-3,c=(-3)0.2,則a,b,c的大小關(guān)系為( 。
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

同步練習(xí)冊(cè)答案