分析 利用抽象函數(shù)求出周期,通過(guò)分段函數(shù)的解析式,化簡(jiǎn)所求表達(dá)式的自變量為 具體函數(shù)的定義域的值,然后求解即可.
解答 解:定義在R上的函數(shù)f(x)滿足f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(15-x),x≤0}\\{f(x-2),x>0}\end{array}\right.$,
x>0時(shí),函數(shù)的周期為:2.
所以f(3)=f(1)=f(-1)=log216=4.
f(f(2015))=f(f(-1))=f(4)=f(0)=log215.
故答案為:4;log215.
點(diǎn)評(píng) 本題考查抽象函數(shù)的應(yīng)用,分段函數(shù)函數(shù)值的求法,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {an}是以q(q≠1)為公比的等比數(shù)列,則a1+a2+…+an=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$ | |
B. | 若n∈N*,則cos$\frac{α}{2}$•cos$\frac{α}{{2}^{2}}$•cos$\frac{α}{{2}^{3}}$…cos$\frac{α}{{2}^{n}}$=$\frac{sinα}{{2}^{n}sin\frac{α}{{2}^{n}}}$ | |
C. | 若n∈N*,則n2+3n+1是質(zhì)數(shù) | |
D. | (n2-1)+22(n2-22)+…+n2(n2-n2)=$\frac{{n}^{2}(n-1)(n+1)}{4}$對(duì)任何n∈N*都成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $\root{2}{6}$ | C. | 6 | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{y-{y}_{1}}{x-{x}_{1}}$=k為過(guò)點(diǎn)P(x1,y1)且斜率為k的直線方程 | |
B. | 過(guò)y軸上一點(diǎn)(0,b)得直線方程可以表示為y=kx+b | |
C. | 若直線在x軸、y軸的截距分別為a與b,則該直線方程為$\frac{x}{a}$+$\frac{y}$=1 | |
D. | 方程(x2-x1)(y-y1)=(y2-y1)(x-x1)表示過(guò)兩點(diǎn)P(x1,y1)、Q(x2,y2)一條直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x2+$\frac{{y}^{2}}{3}$=1 | B. | $\frac{{x}^{2}}{3}+{y}^{2}=1$ | C. | $\frac{{x}^{2}}{12}+\frac{{y}^{2}}{16}=1$ | D. | $\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | b>c>a |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com