(2014·寶雞模擬)讀程序回答問題

對甲、乙兩程序和輸出結(jié)果判斷正確的是(  )

A.程序不同,結(jié)果不同 B.程序不同,結(jié)果相同

C.程序相同,結(jié)果不同 D.程序相同,結(jié)果相同

 

B

【解析】從兩個程序可知它們的程序語句不同,但其算法都是求1+2+3+…+1000,故結(jié)果相同.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第八章 平面解析幾何(解析版) 題型:填空題

已知兩條直線y=ax-2和y=(a+2)x+1互相垂直,則a等于________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用(解析版) 題型:填空題

已知定義在區(qū)間[0,1]上的函數(shù)y=f(x)圖象如圖所示,對于滿足0<x1<x2<1的任意x1,x2給出下列結(jié)論:

①f(x2)-f(x1)>x2-x1;

②x2f(x1)>x1f(x2);

<f.

其中正確結(jié)論的序號是________.(把所有正確結(jié)論的序號都填寫在橫線上)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第九章計數(shù)原理與概率隨機變量及其分布(解析版) 題型:解答題

某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

1月

10日

2月

10日

3月

10日

4月

10日

5月

10日

6月

10日

晝夜溫差

x(℃)

10

11

13

12

8

6

就診人數(shù)

y(個)

22

25

29

26

16

12

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.

(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率.

(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=x+.

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

(參考公式:==,=-).

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第九章計數(shù)原理與概率隨機變量及其分布(解析版) 題型:填空題

(2014·嘉興模擬)在一次運動員的選拔中,測得7名選手身高(單位:cm)分布的莖葉圖如圖所示.已知記錄的平均身高為164cm,但有一名候選人的身高記錄不清楚,其末位數(shù)記為x,那么x的值為__________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第三章 三角函數(shù)、解三角形(解析版) 題型:解答題

(2014·孝感模擬)已知函數(shù)f(x)=sinωxcosωx-cos2ωx,其中ω為使f(x)能在x=時取得最大值的最小正整數(shù).

(1)求ω的值.

(2)設(shè)△ABC的三邊長a,b,c滿足b2=ac,且邊b所對的角θ的取值集合為M,當(dāng)x∈M時,求f(x)的值域.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第七章 立體幾何(解析版) 題型:解答題

(2014·海淀模擬)如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1,且E是BC中點.

(1)求證:A1B∥平面AEC1.

(2)求證:B1C⊥平面AEC1.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 解析幾何(解析版) 題型:解答題

設(shè)橢圓E:的焦點在x軸上.

(1)若橢圓E的焦距為1,求橢圓E的方程;

(2)設(shè)F1、F2分別是橢圓E的左、右焦點,P為橢圓E上第一象限內(nèi)的點,直線F2P交y軸于點Q,并且F1P⊥F1Q.證明:當(dāng)a變化時,點P在某定直線上.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第三章 三角函數(shù)、解三角形(解析版) 題型:填空題

(2014·長沙模擬)計算:=____________.

 

查看答案和解析>>

同步練習(xí)冊答案