【題目】在平面直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系.直線的參數(shù)方程為為參數(shù)),圓的參數(shù)方程為為參數(shù)).

1)寫出直線的普通方程和圓的極坐標方程;

2)已知點,直線與圓交于兩點,求的值.

【答案】1,.(2

【解析】

1)消去參數(shù)方程中的參數(shù),求得直線與圓的普通方程,根據(jù)直角坐標方程和極坐標方程的轉(zhuǎn)化公式,求得圓的極坐標方程.

2)將直線的參數(shù)方程代入圓的普通方程,化簡后寫出根與系數(shù)關(guān)系,根據(jù)直線參數(shù)方程中參數(shù)的幾何意義,求得的值.

1)由,兩式相減并化簡得直線的普通方程為:,

,消去參數(shù),得

的普通方程為:,

所以圓的極坐標方程為:

2)把直線的參數(shù)方程為參數(shù))帶入到圓的普通方程:中化簡可得:,設(shè),對應(yīng)的參數(shù)分別為,,

,

,異號,∴

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】費馬點是指三角形內(nèi)到三角形三個頂點距離之和最小的點。當(dāng)三角形三個內(nèi)角均小于時,費馬點與三個頂點連線正好三等分費馬點所在的周角,即該點所對的三角形三邊的張角相等均為。根據(jù)以上性質(zhì),函數(shù)的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)(其中為實數(shù)).

1)若,求零點的個數(shù);

2)求證:若不是的極值點,則無極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某賓館有50個房間供游客居住,當(dāng)每個房間定價為每天180元時,房間會全部住滿;房間單價增加10元,就會有一個房間空閑,如果游客居住房間,賓館每間每天需花費20元的各種維護費用.房間定價多少時,賓館利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“黃梅時節(jié)家家雨”“梅雨如煙暝村樹”“梅雨暫收斜照明”……江南梅雨的點點滴滴都流潤著濃烈的詩情.每年六、七月份,我國長江中下游地區(qū)進入持續(xù)25天左右的梅雨季節(jié),如圖是江南鎮(zhèn)2009~2018年梅雨季節(jié)的降雨量(單位:)的頻率分布直方圖,試用樣本頻率估計總體概率,解答下列問題:

“梅實初黃暮雨深”.請用樣本平均數(shù)估計鎮(zhèn)明年梅雨季節(jié)的降雨量;

“江南梅雨無限愁”.鎮(zhèn)的楊梅種植戶老李也在犯愁,他過去種植的甲品種楊梅,他過去種植的甲品種楊梅,畝產(chǎn)量受降雨量的影響較大(把握超過八成).而乙品種楊梅2009~2018年的畝產(chǎn)量(/畝)與降雨量的發(fā)生頻數(shù)(年)如列聯(lián)表所示(部分數(shù)據(jù)缺失).請你幫助老李排解憂愁,他來年應(yīng)該種植哪個品種的楊梅受降雨量影響更?

(完善列聯(lián)表,并說明理由).

畝產(chǎn)量\降雨量

合計

<600

2

1

合計

10

0.50

0.40

0.25

0.15

0.10

0.455

0.708

1.323

2.072

2.703

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個焦點與上、下頂點構(gòu)成直角三角形,以橢圓的長軸長為直徑的圓與直線相切.

(1)求橢圓的標準方程;

(2)設(shè)過橢圓右焦點且不平行于軸的動直線與橢圓相交于兩點,探究在軸上是否存在定點,使得為定值?若存在,試求出定值和點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位從一所學(xué)校招收某類特殊人才.對位已經(jīng)選拔入圍的學(xué)生進行運動協(xié)調(diào)能力和邏輯思維能力的測試,其測試結(jié)果如下表:

一般

良好

優(yōu)秀

一般

良好

優(yōu)秀

例如表中運動協(xié)調(diào)能力良好且邏輯思維能力一般的學(xué)生是人.由于部分數(shù)據(jù)丟失,只知道從這參加測試的學(xué)生中隨機抽取一,抽到邏輯思維能力優(yōu)秀的學(xué)生的概率為

1,的值;

2運動協(xié)調(diào)能力為優(yōu)秀的學(xué)生中任意抽取,求其中至少有一位邏輯思維能力優(yōu)秀的學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)四邊形為矩形,點為平面外一點,且平面,若,.

1)求與平面所成角的大。

2)在邊上是否存在一點,使得點到平面的距離為,若存在,求出的值,若不存在,請說明理由;

3)若點的中點,在內(nèi)確定一點,使的值最小,并求此時的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某年數(shù)學(xué)競賽請自以為來自X星球的選手參加填空題比賽,共10道題目,這位選手做題有一個古怪的習(xí)慣:先從最后一題(第10題)開始往前看,凡是遇到會的題就作答,遇到不會的題目先跳過(允許跳過所有的題目),一直看到第1題;然后從第1題開始往后看,凡是遇到先前未答的題目就隨便寫個答案,遇到先前已答的題目則跳過(例如,他可以按照9,8,7,4,3,2,1,5,6,10的次序答題),這樣所有的題目均有作答,設(shè)這位選手可能的答題次序有n種,則n的值為(

A.512B.511C.1024D.1023

查看答案和解析>>

同步練習(xí)冊答案