【題目】如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點.
(1)求證:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求二面角C-PB-A的余弦值.
【答案】(1)見解析(2)
【解析】
(1)由AB是圓的直徑,得AC⊥BC,
由PA⊥平面ABC,BC平面ABC,得PA⊥BC.
又PA∩AC=A,PA平面PAC,AC平面PAC,
所以BC⊥平面PAC.
因為BC平面PBC,
所以平面PBC⊥平面PAC.
(2)過C作CM∥AP,則CM⊥平面ABC.
如圖,以點C為坐標(biāo)原點,分別以直線CB、CA、CM為x軸,y軸,z軸建立空間直角坐標(biāo)系.
在Rt△ABC中,因為AB=2,AC=1,所以BC=.
因為PA=1,所以A(0,1,0),B(,0,0),P(0,1,1).故=(,0,0),=(0,1,1).
設(shè)平面BCP的法向量為n1=(x1,y1,z1),則所以
不妨令y1=1,則n1=(0,1,-1).因為=(0,0,1),=(,-1,0),
設(shè)平面ABP的法向量為n2=(x2,y2,z2),則所以
不妨令x2=1,則n2=(1,,0).于是cos〈n1,n2〉==.
由題圖可判斷二面角為銳角,所以二面角C-PB-A的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,直線的極坐標(biāo)方程為,現(xiàn)以極點為原點,極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)).
(1)求直線的直角坐標(biāo)方程和曲線的普通方程;
(2)若曲線為曲線關(guān)于直線的對稱曲線,點,分別為曲線、曲線上的動點,點坐標(biāo)為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、、表示不同的直線,、、表示不同的平面,給出下列個命題:其中命題正確的個數(shù)是( )
①若,且,則;
②若,且,則;
③若,,,則;
④ 若,,,且,則.
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為:(為參數(shù)),在以為極點,軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若曲線與交于,兩點,點的坐標(biāo)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市政府為了節(jié)約生活用電,計劃在本市試行居民生活用電定額管理,即確定一戶居民月用電量標(biāo)準(zhǔn)a,用電量不超過a的部分按平價收費,超出a的部分按議價收費為此,政府調(diào)查了100戶居民的月平均用電量單位:度,以,,,,,分組的頻率分布直方圖如圖所示.
根據(jù)頻率分布直方圖的數(shù)據(jù),求直方圖中x的值并估計該市每戶居民月平均用電量的值;
用頻率估計概率,利用的結(jié)果,假設(shè)該市每戶居民月平均用電量X服從正態(tài)分布
估計該市居民月平均用電量介于度之間的概率;
利用的結(jié)論,從該市所有居民中隨機抽取3戶,記月平均用電量介于度之間的戶數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面平面,,,為的中點..
(1)求證:平面平面;
(2),在線段上是否存在一點,使得二面角的余弦值為.請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若曲線上點處的切線過點,求函數(shù)的單調(diào)減區(qū)間;
(Ⅱ)若函數(shù)在上無零點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時,求函數(shù)在處的切線方程;
(2)若函數(shù)存在兩個極值點,求的取值范圍;
(3)若不等式對任意的實數(shù)恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com