【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù).

(1)當時,證明:對;

(2)若函數(shù)上存在極值,求實數(shù)的取值范圍。

【答案】(1)見證明;(2)

【解析】

(1)利用導數(shù)說明函數(shù)的單調性,進而求得函數(shù)的最小值,得到要證明的結論;

(2)問題轉化為導函數(shù)在區(qū)間上有解,法一:對a分類討論,分別研究a的不同取值下,導函數(shù)的單調性及值域,從而得到結論.法二:構造函數(shù),利用函數(shù)的導數(shù)判斷函數(shù)的單調性求得函數(shù)的值域,再利用零點存在定理說明函數(shù)存在極值.

(1)當時,,于是,.

又因為,當時,.

故當時,,即.

所以,函數(shù)上的增函數(shù),于是,.

因此,對,;

(2) 方法一:由題意上存在極值,則上存在零點,

①當時,上的增函數(shù),

注意到,

所以,存在唯一實數(shù),使得成立.

于是,當時,上的減函數(shù);

時,,上的增函數(shù);

所以為函數(shù)的極小值點;

②當時,上成立,

所以上單調遞增,所以上沒有極值;

③當時,上成立,

所以上單調遞減,所以上沒有極值,

綜上所述,使上存在極值的的取值范圍是.

方法二:由題意,函數(shù)上存在極值,則上存在零點.

上存在零點.

,,則由單調性的性質可得上的減函數(shù).

的值域為,所以,當實數(shù)時,上存在零點.

下面證明,當時,函數(shù)上存在極值.

事實上,當時,上的增函數(shù),

注意到,所以,存在唯一實數(shù)

使得成立.于是,當時,,上的減函數(shù);

時,上的增函數(shù);

為函數(shù)的極小值點.

綜上所述,當時,函數(shù)上存在極值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知,若函數(shù)4個零點,則實數(shù)k的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校有教師400人,對他們進行年齡狀況和學歷的調查,其結果如下:

學歷

35歲以下

35-55

55歲及以上

本科

60

40

碩士

80

40

(1)若隨機抽取一人,年齡是35歲以下的概率為,求;

(2)在35-55歲年齡段的教師中,按學歷狀況用分層抽樣的方法,抽取一個樣本容量為5的樣本,然后在這5名教師中任選2人,求兩人中至多有1人的學歷為本科的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在區(qū)間內隨機取兩個數(shù)分別記為,則使得函數(shù)有零點的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)的離心率為,且經過點.

(1)求橢圓的方程;

(2)過點作直線與橢圓交于不同的兩點,,試問在軸上是否存在定點使得直線與直線恰關于軸對稱?若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知點F1F2分別為橢圓E的左、右焦點,AB分別是橢圓E的左、右頂點,D(1,0)為線段OF2的中點,.

(1)求橢圓E的方程;

(2)M為橢圓上的動點(異于A、B),連接MF1并延長交橢圓E于點N,連接MDND并分別延長交橢圓E于點P、Q,連接PQ設直線MN、PQ的斜率存在且分別為k1、k2,試問題是否存在常數(shù),使得恒成立?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)對某市工薪階層關于樓市限購令的態(tài)度進行調查,隨機抽調了50人,他們月收入的頻數(shù)分布及對樓市限購令贊成人數(shù)如下表.

月收入(單位百元)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

4

8

12

5

2

1

(1)由以上統(tǒng)計數(shù)據(jù)填下面2×2列聯(lián)表,并問是否有99%的把握認為月收入以5500元為分界點對樓市限購令的態(tài)度有差異;

月收入不低于55百元的人數(shù)

月收入低于55百元的人數(shù)

合計

贊成

a=______________

c=______________

______________

不贊成

b=______________

d=______________

______________

合計

______________

______________

______________

(2)試求從年收入位于(單位:百元)的區(qū)間段的被調查者中隨機抽取2人,恰有1位是贊成者的概率。

參考公式:,其中.

參考值表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)上的偶函數(shù),其圖象關于點對稱,且在區(qū)間上是單調函數(shù),則的值是( )

A. B. C. D. 無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=lnx,其中a0.曲線y=fx)在點(1f1))處的切線與直線y=x+1垂直.

1)求函數(shù)fx)的單調區(qū)間;

2)求函數(shù)fx)在區(qū)間[1,e]上的極值和最值.

查看答案和解析>>

同步練習冊答案