已知函數(shù)f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.
(1)當(dāng)a=0時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線的斜率;
(2)當(dāng)a≠時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間與極值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
(1)若時(shí),函數(shù)有三個(gè)互不相同的零點(diǎn),求的取值范圍;
(2)若函數(shù)在內(nèi)沒(méi)有極值點(diǎn),求的取值范圍;
(3)若對(duì)任意的,不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè),函數(shù).
(1)若x=2是函數(shù)的極值點(diǎn),求的值;
(2)設(shè)函數(shù),若≤0對(duì)一切都成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
記函數(shù)fn(x)=a·xn-1(a∈R,n∈N*)的導(dǎo)函數(shù)為f′n(x),已知f′3(2)=12.
(1)求a的值;
(2)設(shè)函數(shù)gn(x)=fn(x)-n2ln x,試問(wèn):是否存在正整數(shù)n使得函數(shù)gn(x)有且只有一個(gè)零點(diǎn)?若存在,請(qǐng)求出所有n的值;若不存在,請(qǐng)說(shuō)明理由;
(3)若實(shí)數(shù)x0和m(m>0且m≠1)滿足=,試比較x0與m的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=x3-4x2+5x-4.
(1)求曲線f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)求經(jīng)過(guò)點(diǎn)A(2,-2)的曲線f(x)的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù) .
(1) 當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2) 當(dāng)時(shí),求函數(shù)在上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(R),為其導(dǎo)函數(shù),且時(shí)有極小值.
(1)求的單調(diào)遞減區(qū)間;
(2)若,,當(dāng)時(shí),對(duì)于任意x,和的值至少有一個(gè)是正數(shù),求實(shí)數(shù)m的取值范圍;
(3)若不等式(為正整數(shù))對(duì)任意正實(shí)數(shù)恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)滿足如下條件:當(dāng)時(shí),,且對(duì)任
意,都有.
(1)求函數(shù)的圖象在點(diǎn)處的切線方程;
(2)求當(dāng),時(shí),函數(shù)的解析式;
(3)是否存在,、、、、,使得等式
成立?若存在就求出(、、、、),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)設(shè)函數(shù).若至少存在一個(gè),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com