設(shè)函數(shù)
(1)若時(shí),函數(shù)有三個(gè)互不相同的零點(diǎn),求的取值范圍;
(2)若函數(shù)在內(nèi)沒有極值點(diǎn),求的取值范圍;
(3)若對任意的,不等式在上恒成立,求實(shí)數(shù)的取值范圍.
(1);(2);(3).
解析試題分析:(1)時(shí),,有三個(gè)互不相同的零點(diǎn),即有三個(gè)互不相同的實(shí)數(shù)根,構(gòu)造函數(shù)確定函數(shù)的單調(diào)性,求函數(shù)的極值,從而確定的取值范圍;
(2)要使函數(shù)在內(nèi)沒有極值點(diǎn),只需在上沒有實(shí)根即可,即的兩根或不在區(qū)間上;
(3)求導(dǎo)函數(shù)來確定極值點(diǎn),利用的取值范圍,求出在上的最大值,再求滿足時(shí)的取值范圍.
(1)當(dāng)時(shí),.
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/c7/5/dcnvq.png" style="vertical-align:middle;" />有三個(gè)互不相同的零點(diǎn),所以,即有三個(gè)互不相同的實(shí)數(shù)根.
令,則.
令,解得;令,解得或.
所以在和上為減函數(shù),在上為增函數(shù).
所以,.
所以的取值范圍是.
(2)因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/88/7/z9fc11.png" style="vertical-align:middle;" />,所以.
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/c7/5/dcnvq.png" style="vertical-align:middle;" />在內(nèi)沒有極值點(diǎn),所以方程在區(qū)間上沒有實(shí)數(shù)根,
由,二次函數(shù)對稱軸,
當(dāng)時(shí),即,解得或,
所以,或(不合題意,舍去),解得.
所以的取值范圍是;
(3)因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/f6/d/rtvrp2.png" style="vertical-align:middle;" />,所以或,且時(shí),,.
又因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/9d/d/0iwes1.png" style="vertical-align:middle;" />,所以在上小于0,是減函數(shù);
在上大于0,是增函數(shù);
所以,而,
所以,
又因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/47/c/1usml3.png" style="vertical-align:middle;" />在
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),().
(1)若x=3是的極值點(diǎn),求在[1,a]上的最小值和最大值;
(2)若在時(shí)是增函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是函數(shù)的一個(gè)極值點(diǎn),其中.
(1)與的關(guān)系式;
(2)求的單調(diào)區(qū)間;
(3)當(dāng)時(shí),函數(shù)的圖象上任意一點(diǎn)處的切線的斜率恒大于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,( a為常數(shù),e為自然對數(shù)的底).
(1)
(2)時(shí)取得極小值,試確定a的取值范圍;
(3)在(2)的條件下,設(shè)的極大值構(gòu)成的函數(shù),將a換元為x,試判斷是否能與(m為確定的常數(shù))相切,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1當(dāng) 時(shí), 與)在定義域上單調(diào)性相反,求的 的最小值。
(2)當(dāng)時(shí),求證:存在,使的三個(gè)不同的實(shí)數(shù)解,且對任意且都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中,為自然對數(shù)的底數(shù)。
(Ⅰ)設(shè)是函數(shù)的導(dǎo)函數(shù),求函數(shù)在區(qū)間上的最小值;
(Ⅱ)若,函數(shù)在區(qū)間內(nèi)有零點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.
(1)當(dāng)a=0時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線的斜率;
(2)當(dāng)a≠時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間與極值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com