給定橢圓.稱圓心在原點O,半徑為的圓是橢圓C的“準圓”.若橢圓C的一個焦點為,其短軸上的一個端點到F的距離為
(1)求橢圓C的方程和其“準圓”方程;
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線,使得與橢圓C都只有一個交點,試判斷是否垂直?并說明理由.

(1) ; (2) 垂直.

解析試題分析:(1)由“橢圓C的一個焦點為,其短軸上的一個端點到F的距離為”知:從而可得橢圓的標準方程和“準圓”的方程;
(2)分兩種情況討論:①當(dāng)中有一條直線斜率不存在;②直線斜率都存在.
對于①可直接求出直線的方程并判斷其是不互相垂直;
對于②設(shè)經(jīng)過準圓上點與橢圓只有一個公共點的直線為
與橢圓方程聯(lián)立組成方程組消去得到關(guān)于的方程:
化簡整理得:
而直線的斜率正是方程的兩個根,從而
試題解析:(1)
橢圓方程為
準圓方程為
(2)①當(dāng)中有一條無斜率時,不妨設(shè)無斜率,
因為與橢圓只有一個共公點,則其方程為
當(dāng)方程為時,此時與準圓交于點
此時經(jīng)過點(或)且與橢圓只有一個公共瞇的直線是(或
(或),顯然直線垂直;
同理可證方程為時,直線也垂直.
②當(dāng)都有斜率時,設(shè)點其中
設(shè)經(jīng)過點與橢圓只有一個公共點的直線為
則由消去,得

化簡整理得:
因為,所以有
設(shè)的斜率分別為,因為與橢圓只有一個公共點
所以滿足上述方程
所以,即垂直,
綜合①②知, 垂直.
考點:1、橢圓的標準方程;2、直線與圓錐曲線的綜合問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓:的左頂點為,直線交橢圓兩點(下),動點和定點都在橢圓上.
(1)求橢圓方程及四邊形的面積.
(2)若四邊形為梯形,求點的坐標.
(3)若為實數(shù),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2013·上海高考)如圖,已知雙曲線C1-y2=1,曲線C2:|y|=|x|+1.P是平面內(nèi)一點.若存在過點P的直線與C1,C2都有共同點,則稱P為“C1-C2型點”.

(1)在正確證明C1的左焦點是“C1-C2型點”時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證).
(2)設(shè)直線y=kx與C2有公共點,求證|k|>1,進而證明原點不是“C1-C2型點”.
(3)求證:圓x2+y2=內(nèi)的點都不是“C1-C2型點”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標系xOy中,F(xiàn)是拋物線C:x2=2py(p>0)的焦點,M是拋物線C上位于第一象限內(nèi)的任意一點,過M,F(xiàn),O三點的圓的圓心為Q,點Q到拋物線C的準線的距離為.
(1)求拋物線C的方程;
(2)是否存在點M,使得直線MQ與拋物線C相切于點M?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知、為橢圓的左右焦點,點為其上一點,且有
.
(1)求橢圓的標準方程;
(2)過的直線與橢圓交于、兩點,過平行的直線與橢圓交于兩點,求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

給定橢圓.稱圓心在原點O,半徑為的圓是橢圓C的“準圓”.若橢圓C的一個焦點為,其短軸上的一個端點到F的距離為
(1)求橢圓C的方程和其“準圓”方程;
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線,使得與橢圓C都只有一個交點,試判斷是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標系中,已知動點到點的距離為,到軸的距離為,且
(1)求點的軌跡的方程;
(2) 若直線斜率為1且過點,其與軌跡交于點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標系xOy中,橢圓的離心率為,過橢圓右焦點作兩條互相垂直的弦.當(dāng)直線斜率為0時,

(1)求橢圓的方程;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓ab0)的離心率為,且過點().
(1)求橢圓E的方程;
(2)設(shè)直線l:y=kx+t與圓(1<R<2)相切于點A,且l與橢圓E只有一個公共點B.
①求證:
②當(dāng)R為何值時,取得最大值?并求出最大值.

查看答案和解析>>

同步練習(xí)冊答案