在數(shù)列{an}中,其前n項(xiàng)和Sn與an滿足關(guān)系式:(t-1)Sn+(2t+1)an=t(t>0,n=1,2,3,…).
(Ⅰ)求證:數(shù)列{an}是等比數(shù)列;
(Ⅱ)設(shè)數(shù)列{an}的公比為f(t),已知數(shù)列{bn},b1=1,bn+1=3f(
1
bn
)  (n=1,2,3,…)
,求b1b2-b2b3+b3b4-b4b5+…+(-1)n+1bnbn+1的值.
證明:(Ⅰ) 當(dāng)n=1時,(t-1)S1+(2t+1)a1=t,∴a1=
1
3

當(dāng)n≥2時,(t-1)Sn+(2t+1)an=t,(t-1)Sn-1+(2t+1)an-1=t
∴(t-1)an+(2t+1)an-(2t+1)an-1=0
∴3tan=(2t+1)an-1,t>0
an
an-1
=
2t+1
3t
,a1=
1
3

∴數(shù)列{an}是以
2t+1
3t
為公比,
1
3
為首項(xiàng)的等比數(shù)列;
(II)由(Ⅰ)可知,f(t)=
2t+1
3t
(t>0)
,bn+1=3f(
1
bn
)
,則bn+1=bn+2
所以,數(shù)列{bn}是以2為公差,首項(xiàng)為1的等差數(shù)列
即bn=2n-1
①當(dāng)n為奇數(shù)時,
b1b2-b2b3+b3b4-b4b5+…+(-1)n+1bnbn+1
=b1b2+b3(b4-b2)+b5(b6-b4)+…+bn(bn+1-bn-1
=3+4(b3+b5+…+bn
=2n2+2n-1
②當(dāng)n為偶數(shù)時,
b1b2-b2b3+b3b4-b4b5+…+(-1)n+1bnbn+1
=b2(b1-b3)+b4(b3-b5)+…+bn(bn-1-bn+1
=-4(b2+b4+…+bn
=-(2n2+2n)
所以,原式=
2n2+2n-1       n為奇數(shù)
-(2n2+2n)       n為偶數(shù)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,其前n項(xiàng)和Sn=4n2,則a4=
28
28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,其前n項(xiàng)和Sn=4n+a,若數(shù)列{an}是等比數(shù)列,則常數(shù)a的值為
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,其前n項(xiàng)和Sn=3•2n+k,若數(shù)列{an}是等比數(shù)列,則常數(shù)k的值為
-3
-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浙江模擬)在數(shù)列{an}中,其前n項(xiàng)和Sn與an滿足關(guān)系式:(t-1)Sn+(2t+1)an=t(t>0,n=1,2,3,…).
(Ⅰ)求證:數(shù)列{an}是等比數(shù)列;
(Ⅱ)設(shè)數(shù)列{an}的公比為f(t),已知數(shù)列{bn},b1=1,bn+1=3f(
1bn
)  (n=1,2,3,…)
,求b1b2-b2b3+b3b4-b4b5+…+(-1)n+1bnbn+1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,其前n項(xiàng)和Sn=4n2-n-8,則a4=
 

查看答案和解析>>

同步練習(xí)冊答案