1.若sin$\frac{α}{2}$=$\frac{1}{2}$,則cosα等于 ( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.±$\frac{1}{2}$D.±$\frac{\sqrt{3}}{2}$

分析 根據(jù)sin2α+cos2α=1,即可求出.

解答 解:∵sin$\frac{α}{2}$=$\frac{1}{2}$,
∴cosα=±$\sqrt{1-si{n}^{2}α}$=±$\sqrt{1-\frac{1}{4}}$=±$\frac{\sqrt{3}}{2}$,
故選:D.

點(diǎn)評 本題考查了同角的三角函數(shù)的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.sinα+cosα=$\frac{2}{3}$,α∈(0,π),則sinα-cosα為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知成等比數(shù)列的三個數(shù)的積為64,且這三個數(shù)的和為14,求這三個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.證明:${∫}_{x}^{1}$$\frac{dx}{1+{x}^{2}}$=${∫}_{1}^{\frac{1}{x}}$$\frac{dx}{1+{x}^{2}}$(x>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)若a≠b,a>0,b>0,且alg(ax)=blg(bx),則(ab)lg(abx)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.集合的表示法有描述法和列舉法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓的極坐標(biāo)方程為:ρ2-4$\sqrt{2}$ρcos(θ-$\frac{π}{4}$)+6=0,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立直角坐標(biāo)系.
(1)將圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若點(diǎn)P(x,y)在該圓上,求x2+y2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)△ABC中的內(nèi)角A,B,C所對的邊分別為a,b,c,已知a=2,(a+b)(sinA-sinB)=(c-b)sinC.
(Ⅰ)若b=2,求c邊的長;
(Ⅱ)求△ABC面積的最大值,并指明此時三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在底面半徑為2,母線長為4的圓錐中內(nèi)有一個高為$\sqrt{3}$的圓柱.
(1)求:圓柱表面積的最大值;
(2)在(1)的條件下,求該圓柱外接球的表面積和體積.

查看答案和解析>>

同步練習(xí)冊答案