某中學團委組織了“弘揚奧運精神,愛我中華”的知識競賽,從參加考試的學生中抽出60名學生,將其成績(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后畫出如圖所示部分頻率分布直方圖.觀察圖形給出的信息,回答下列問題:
(1)求第四小組的頻率;
(2)估計這次考試的及格率(60分及以上為及格)和平均分.
考點:眾數(shù)、中位數(shù)、平均數(shù),頻率分布直方圖
專題:概率與統(tǒng)計
分析:(1)利用各組的頻率和等于1,求出第四小組的頻率;
(2)計算60分及以上的分數(shù)的頻率和即為合格率,利用組中值求出平均分.
解答: 解:(1)∵頻率分布直方圖中各組的頻率和等于1,
∴第四組的頻率為f4=1-(0.025+0.015×2+0.01+0.005)×10=0.3;(3分)
其頻率分布直方圖如圖所示;
(2)依題意,60分及以上的分數(shù)所在的第三、四、五、六組,
頻率和為(0.015+0.030+0.025+0.005)×10=0.75;
∴估計這次考試的合格率是75%;(6分)
利用組中值估算這次考試的平均分,可得:
45•f1+55•f2+65•f3+75•f4+85•f5+95•f6
=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71;
所以估計這次考試的平均分是71分.  (10分)
點評:本題考查了頻率分布直方圖的應用問題,解題時應利用頻率分布直方圖的知識,會求頻率、眾數(shù)與平均數(shù)等,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某公司銷售小米、紅米、黑米三款手機,每款手機都有經(jīng)濟型和豪華型兩種型號,據(jù)統(tǒng)計2014年3月份共銷售800部手機(具體銷售情況見表)
小米手機 紅米手機 黑米手機
經(jīng)濟型 240 x y
豪華型 160 80 z
已知在銷售的800部手機中,經(jīng)濟型紅米手機銷售的頻率是0.15.
(1)現(xiàn)用分層抽樣的方法在小米、紅米、黑米三款手機中抽取60部,求在黑米手機中抽取多少部?
(2)若y≥96,z≥93,求銷售的黑米手機中經(jīng)濟型比豪華型多的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

實數(shù)m取什么值時,復數(shù)z=m(m+2)+(m2-4)i(i是虛數(shù)單位):
(1)是虛數(shù);
(2)是純虛數(shù);
(3)在復平面內對應的點在第四象限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點C(1,-2),P(-5,-2),動點滿足|
QC
|=3.
(1)求動點Q的軌跡方程;
(2)求
PC
PQ
夾角的取值范圍;
(3)是否存在斜率為1的直線l,l被點Q的軌跡所截得的弦為AB,以AB為直徑的圓過原點?若存在,求出l的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為平行四邊形,AB=1,AC=1,BC=
2
,點E在PC上,AE⊥PC.
(Ⅰ)證明:PC⊥平面ABE;
(Ⅱ)若∠PDC的大小為60度,求二面角B-AE-D的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,AB=2,點E、F分別是AB、A1D1的中點.
(Ⅰ)求線段EF的長;
(Ⅱ)求異面直線EF與CB1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m,n是正整數(shù),f(x)=(1+x)m+(1+x)n的展開式中x的系數(shù)為7,求f(x)展開式中x2的系數(shù)的最小值,并求這時f(0.003)的近似值(精確到0.01).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在綜合素質評價的某個維度的測評中,依據(jù)評分細則,學生之間相互打分,最終將所有的數(shù)據(jù)合成一個分數(shù),滿分100分,按照大于80分為優(yōu)秀,小于80分為合格.為了解學生在該維度的測評結果,從畢業(yè)班中隨機抽出一個班的數(shù)據(jù),該班共有60名學生,得到如下的列聯(lián)表.
優(yōu)秀 合格 總計
男生 6
女生 18
總計 60
已知在該班隨機抽取1人測評結果為優(yōu)秀的概率為
1
3

(Ⅰ)請完成上面的列聯(lián)表;
(Ⅱ)能否在犯錯誤的概率不超過0.10的前提下認為性別與測評結果有關系?
P(K2≥k0 0.100 0.050 0.010 0.001
k0 2.706 3.841 6.635 10.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設變量x、y滿足約束條件
x+y≤a
x+y≥8
x≥6
且不等式x+2y≤14恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案