在綜合素質(zhì)評(píng)價(jià)的某個(gè)維度的測(cè)評(píng)中,依據(jù)評(píng)分細(xì)則,學(xué)生之間相互打分,最終將所有的數(shù)據(jù)合成一個(gè)分?jǐn)?shù),滿分100分,按照大于80分為優(yōu)秀,小于80分為合格.為了解學(xué)生在該維度的測(cè)評(píng)結(jié)果,從畢業(yè)班中隨機(jī)抽出一個(gè)班的數(shù)據(jù),該班共有60名學(xué)生,得到如下的列聯(lián)表.
優(yōu)秀 合格 總計(jì)
男生 6
女生 18
總計(jì) 60
已知在該班隨機(jī)抽取1人測(cè)評(píng)結(jié)果為優(yōu)秀的概率為
1
3

(Ⅰ)請(qǐng)完成上面的列聯(lián)表;
(Ⅱ)能否在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為性別與測(cè)評(píng)結(jié)果有關(guān)系?
P(K2≥k0 0.100 0.050 0.010 0.001
k0 2.706 3.841 6.635 10.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(1)根據(jù)條件中所給的數(shù)據(jù)和所給的表格把表格填寫完整,做到數(shù)據(jù)正確.
(2)根據(jù)列聯(lián)表寫出求觀測(cè)值的公式,求出觀測(cè)值,把觀測(cè)值同臨界值進(jìn)行比較,得到在犯錯(cuò)誤不超過0.10的前提下認(rèn)為性別與測(cè)評(píng)結(jié)果有關(guān)系.
解答: 解:(1)設(shè)女生x人,則
∵在該班隨機(jī)抽取1人測(cè)評(píng)結(jié)果為優(yōu)秀的概率為
1
3
,
6+x
60
=
1
3
,
∴x=14.
列聯(lián)表如下:
   優(yōu)秀  合格  總計(jì)
 男生  6  22  28
 女生  14  18  32
 合計(jì)  20  40  60
(2)∵K2=
60(6×18-22×14)2
40×20×32×28
=3.384>2.706
∴在犯錯(cuò)誤不超過0.10的前提下認(rèn)為性別與測(cè)評(píng)結(jié)果有關(guān)系.
點(diǎn)評(píng):本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,是一個(gè)基礎(chǔ)題,這種題目比較簡(jiǎn)單,解題的關(guān)鍵是正確計(jì)算出觀測(cè)值,才能夠得到正確的可信度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,直線l過F且與拋物線C交于M、N兩點(diǎn),已知直線l與x軸垂直時(shí),△OMN的面積為2(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求拋物線C的方程;
(Ⅱ)問是否存在直線l,使得以M、N為對(duì)角線的正方形的第三個(gè)頂點(diǎn)恰好在y軸上,若存在,求直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)團(tuán)委組織了“弘揚(yáng)奧運(yùn)精神,愛我中華”的知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后畫出如圖所示部分頻率分布直方圖.觀察圖形給出的信息,回答下列問題:
(1)求第四小組的頻率;
(2)估計(jì)這次考試的及格率(60分及以上為及格)和平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方形ABCD的邊長(zhǎng)為1,AE=1,DE=
2
,CE=
3
.點(diǎn)P1,P2分別是線段AE、CE(不包括端點(diǎn))上的動(dòng)點(diǎn),且線段P1P2∥平面ABCD.
(Ⅰ)證明:P1P2⊥BD;
(Ⅱ)求四面體P1P2AB體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在(
3x
-
1
2
3x
n的展開式中,第6項(xiàng)T5+1為常數(shù)項(xiàng).
(Ⅰ)求n;
(Ⅱ)問展開式中的有理項(xiàng).分別為第幾項(xiàng)?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx+
1
2
ax2-ax.
(1)若函數(shù)f(x)在x=2處取得極值,求a的值,并求出此時(shí)函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)>0對(duì)x∈[1,2]恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+x+3lnx(a為常數(shù)),其圖象是曲線C.
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若存在實(shí)數(shù)x0,使得f(x0)=x0,則稱x0為函數(shù)f(x)的“等值點(diǎn)”.已知函數(shù)f(x)存在兩個(gè)“等值點(diǎn)”,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=
9
2
時(shí),已知點(diǎn)A(x0,y0)為曲線C上的動(dòng)點(diǎn),曲線C在點(diǎn)A處的切線l1交y軸于點(diǎn)E,設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),其圖象是曲線C′,曲線C′在點(diǎn)A′(x0,y0′)處的切線l2交y軸于點(diǎn)F,試求線段EF的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)滿足f(x)=-f(x-2),當(dāng)x∈[0,1]時(shí)f(x)=x,則f(2014)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察如圖數(shù)表:

根據(jù)以上排列規(guī)律,數(shù)表中第n行中所有數(shù)的和為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案