【題目】某公司為了對(duì)一種新產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按亊先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):

單價(jià)x(元)

4

5

6

7

8

9

銷量V(件)

90

84

83

80

75

68

由表中數(shù)據(jù).求得線性回歸方程為 =﹣4x+a.若在這些樣本點(diǎn)中任取一點(diǎn),則它在回歸直線右上方的概率為

A.
B.
C.
D.

【答案】C
【解析】解: = (4+5+6+7+8+9)= = (90+84+83+80+75+68)=80 ∵ =﹣4x+a,
∴a=106,
∴回歸直線方程 =﹣4x+106;
數(shù)據(jù)(4,90),(5,84),(6,83),(7,80),(8,75),(9,68).
6個(gè)點(diǎn)中有3個(gè)點(diǎn)在直線右上方,即(6,83),(7,80),(8,75).
其這些樣本點(diǎn)中任取1點(diǎn),共有6種不同的取法,
故這點(diǎn)恰好在回歸直線右上方的概率P= =
故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的S值為( )

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C1的參數(shù)方程為 ,曲線C2的極坐標(biāo)方程為
(1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上一點(diǎn),Q曲線C2上一點(diǎn),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2sinxcosx﹣sin2x﹣3cos2x+1.
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)y=f(x)在區(qū)間[0,a]上恰有3個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= sin2x+cos2x.
(1)當(dāng)x∈[0, ]時(shí),求f(x)的取值范圍;
(2)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了檢測(cè)某種產(chǎn)品的質(zhì)量(單位:千克),抽取了一個(gè)容量為N的樣本,整理得到的數(shù)據(jù)作出了頻率分布表和頻率分布直方圖如圖:

分組

頻數(shù)

頻率

[17.5,20)

10

0.05

[20,225)

50

0.25

[22.5,25)

a

b

[25,27.5)

40

c

[27.5,30]

20

0.10

合計(jì)

N

1

(Ⅰ)求出表中N及a,b,c的值;
(Ⅱ)求頻率分布直方圖中d的值;
(Ⅲ)從該產(chǎn)品中隨機(jī)抽取一件,試估計(jì)這件產(chǎn)品的質(zhì)量少于25千克的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題:“x∈{x|﹣1<x<1},使等式x2﹣x﹣m=0成立”是真命題.
(1)求實(shí)數(shù)m的取值集合M;
(2)設(shè)不等式 的解集為N,若x∈N是x∈M的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知銳角△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且 =(a,b+c),
(1)求角A;
(2)若a=3,求△ABC面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖四棱錐E﹣ABCD中,四邊形ABCD為平行四邊形,△BCE為等邊三角形,△ABE是以∠A為直角的等腰直角三角形,且AC=BC. (Ⅰ)證明:平面ABE⊥平面BCE;
(Ⅱ)求二面角A﹣DE﹣C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案