設(shè)變量x、y滿足約束條件且不等式x2y≤14恒成立,則實數(shù)a的取值范圍是________

 

[8,10]

【解析】不等式組表示的平面區(qū)域如圖中陰影部分所示,顯然a≥8,否則可行域無意義.由圖可知x2y在點(6a6)處取得最大值2a6,由2a6≤14得,a≤10,故8≤a≤10.

 

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)5-1空間幾何體與點等練習(xí)卷(解析版) 題型:填空題

如圖,在長方形ABCD中,AB2,BC1,EDC的中點,F為線段EC(端點除外)上一動點,現(xiàn)將AFD沿AF折起,使平面ABD平面ABC.在平面ABD內(nèi)過點DDKABK為垂足.設(shè)AKt,則t的取值范圍是________

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)3-1三角函數(shù)與三角恒等變換練習(xí)卷(解析版) 題型:填空題

已知函數(shù)f(x)sin ωxcos ωx(ω0)yf(x)的圖象與直線y2的兩個相鄰交點的距離等于π,則f(x)的單調(diào)遞增區(qū)間是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)2-1函數(shù)的概念與基本初等函數(shù)練習(xí)卷(解析版) 題型:解答題

某養(yǎng)殖廠需定期購買飼料,已知該廠每天需要飼料200千克,每千克飼料的價格為1.8元,飼料的保管費(fèi)與其他費(fèi)用平均每千克每天0.03元,購買飼料每次支付運(yùn)費(fèi)300元.

(1)求該廠多少天購買一次飼料才能使平均每天支付的總費(fèi)用最少;

(2)若提供飼料的公司規(guī)定,當(dāng)一次購買飼料不少于5噸時,其價格可享受八五折優(yōu)惠(即原價的85%).問:該廠是否應(yīng)考慮利用此優(yōu)惠條件?請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)2-1函數(shù)的概念與基本初等函數(shù)練習(xí)卷(解析版) 題型:選擇題

已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x0時,f(x)2x3,則f(2)=( )

A1 B.-1 C. D.-

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)1-2算法與程序框圖等練習(xí)卷(解析版) 題型:選擇題

已知平面直角坐標(biāo)系xOy上的區(qū)域D由不等式組給定,若M(x,y)D上的動點,點A的坐標(biāo)為(,1),則z·的最大值為(  )

A4 B3 C4 D3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-5練習(xí)卷(解析版) 題型:填空題

若關(guān)于實數(shù)x的不等式|x5||x3|<a無解,則實數(shù)a的取值范圍是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-2練習(xí)卷(解析版) 題型:解答題

已知矩陣M有特征值λ14及對應(yīng)的一個特征向量e1.求:

(1)矩陣M;

(2)曲線5x28xy4y21M的作用下的新曲線方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-7-1練習(xí)卷(解析版) 題型:解答題

四張卡片上分別標(biāo)有數(shù)字2”0”0”9”,其中9”可當(dāng)6”用,則由這四張卡片可組成不同的四位數(shù)有多少個?

 

查看答案和解析>>

同步練習(xí)冊答案