已知函數(shù)
(1)求的解析式及減區(qū)間;
(2)若的最小值。
(1), () (2)最小值為.
解析試題分析:(Ⅰ)令 得, ,所以,
,
,
由得,的減區(qū)間為().
(Ⅱ)由題意 ,
,
設(shè), .
當(dāng)時(shí),恒成立,無(wú)最大值;
當(dāng)時(shí),由得,得.
在上為增函數(shù),在上為減函數(shù).
,,
,
設(shè),,
由得,得,
,所以的最小值為.
考點(diǎn):導(dǎo)數(shù) 函數(shù)的性質(zhì)
點(diǎn)評(píng):本題關(guān)鍵是先利用代入法求出,第二問(wèn)中關(guān)鍵是合理構(gòu)造函數(shù),利用函數(shù)單調(diào)性求出函數(shù)的最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的導(dǎo)函數(shù)是,在處取得極值,且
,
(Ⅰ)求的極大值和極小值;
(Ⅱ)記在閉區(qū)間上的最大值為,若對(duì)任意的總有
成立,求的取值范圍;
(Ⅲ)設(shè)是曲線上的任意一點(diǎn).當(dāng)時(shí),求直線OM斜率的最
小值,據(jù)此判斷與的大小關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
文科(本小題滿分14分)設(shè)函數(shù)。(Ⅰ)若函數(shù)在處與直線相切,①求實(shí)數(shù),b的值;②求函數(shù)上的最大值;(Ⅱ)當(dāng)時(shí),若不等式對(duì)所有的都成立,求實(shí)數(shù)m的取值范圍。)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分8分)已知,函數(shù).
(Ⅰ)求的極值(用含的式子表示);
(Ⅱ)若的圖象與軸有3個(gè)不同交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(其中為常數(shù)).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ) 當(dāng)時(shí),設(shè)函數(shù)的3個(gè)極值點(diǎn)為,且.
證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù) .
(1)當(dāng)時(shí),求證:;
(2)在區(qū)間上恒成立,求實(shí)數(shù)的范圍。
(3)當(dāng)時(shí),求證:).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知f(x)=x-(a>0),g(x)=2lnx+bx且直線y=2x-2與曲線y=g(x)相切.
(1)若對(duì)[1,+)內(nèi)的一切實(shí)數(shù)x,小等式f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=l時(shí),求最大的正整數(shù)k,使得對(duì)[e,3](e=2.71828是自然對(duì)數(shù)的底數(shù))內(nèi)的任意k個(gè)實(shí)數(shù)x1,x2,,xk都有成立;
(3)求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com