如圖,圓錐的高PO=4,底面半徑OB=2,D為PO的中點,E為母線PB的中點,F為底面圓周上一點,滿足EF⊥DE.
(1)求異面直線EF與BD所成角的余弦值;
(2)求二面角OOFE的正弦值.
(1)(2)
【解析】(1)以O為原點,底面上過O點且垂直于OB的直線為x軸,OB所在的線為y軸,OP所在的線為z軸,建立空間直角坐標系,則
B(0,2,0),P(0,0,4),D(0,0,2),E(0,1,2).
設(shè)F(x0,y0,0)(x0>0,y0>0),且+=4,
則=(x0,y0-1,-2),=(0,1,0),
∵EF⊥DE,即⊥,則·=y0-1=0,故y0=1.
∴F(,1,0),=(,0,-2),=(0,-2,2).
設(shè)異面直線EF與BD所成角為α,則cosα=.
(2)設(shè)平面ODF的法向量為n1=(x1,y1,z1),則
令x1=1,得y1=-,平面ODF的一個法向量為n1=(1,-,0).
設(shè)平面DEF的法向量為n2=(x2,y2,z2),
同理可得平面DEF的一個法向量為n2=.
設(shè)二面角ODFE的平面角為β,則|cosβ|==.
∴sinβ=.
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第六章第4課時練習卷(解析版) 題型:填空題
設(shè)變量x,y滿足|x|+|y|≤1,則x+2y的最大值為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第六章第1課時練習卷(解析版) 題型:解答題
某商場若將進貨單價為8元的商品按每件10元出售,每天可銷售100件,現(xiàn)準備采用提高售價,減少進貨量的辦法來增加利潤,已知這種商品每件銷售價提高1元,銷售量就要減少10件,問該商場將銷售價每件定為多少元時,才能使得每天所賺的利潤最多?銷售價每件定為多少元時,才能保證每天所賺的利潤在300元以上?
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第六章第1課時練習卷(解析版) 題型:填空題
不等式>0的解集是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第八章第6課時練習卷(解析版) 題型:解答題
如圖所示,四棱錐PABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F為PC的中點,AF⊥PB.
(1)求PA的長;
(2)求二面角B-AF-D的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第八章第6課時練習卷(解析版) 題型:填空題
在正方體ABCDA1B1C1D1中,點E為BB1的中點,則平面A1ED與平面ABCD所成的銳二面角的余弦值為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第八章第5課時練習卷(解析版) 題型:填空題
一個球與一個正三棱柱的三個側(cè)面和兩個底面都相切,已知這個球的體積是π,那么這個三棱柱的體積是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第八章第5課時練習卷(解析版) 題型:填空題
若等腰直角三角形的直角邊長為2,則以一直角邊所在的直線為軸旋轉(zhuǎn)一周所成的幾何體體積是__________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第八章第3課時練習卷(解析版) 題型:填空題
若直線l與平面α不垂直,則在平面α內(nèi)與直線l垂直的直線有________條.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com