已知三次函數(shù)的導函數(shù),,為實數(shù)。
(Ⅰ)若曲線在點()處切線的斜率為12,求的值;
(Ⅱ)若在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,且,求函數(shù)的解析式。

解析:(Ⅰ)   …
(Ⅱ)= …

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)函數(shù)是定義在上的奇函數(shù),且.
(1)求實數(shù)的值.(2)用定義證明上是增函數(shù);
(3)寫出的單調減區(qū)間,并判斷有無最大值或最小值?如有,寫出最大值或最小值(無需說明理由).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知函數(shù)是定義域為R的偶函數(shù),其圖像均在x軸的上方,對任意的,都有,且,又當時,為增函數(shù)。
(1)求的值;
(2)對于任意正整數(shù),不等式:恒成立,求實數(shù)的取值
范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本大題14分)
已知函數(shù)定義域為,且滿足.
(Ⅰ)求解析式及最小值;
(Ⅱ)求證:。        
(Ⅲ)設。求證:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

對于函數(shù),若存在,使,則稱的一
個"不動點".已知二次函數(shù)
(1)當時,求函數(shù)的不動點;
(2)對任意實數(shù),函數(shù)恒有兩個相異的不動點,求的取值范圍;
(3)在(2)的條件下,若的圖象上兩點的橫坐標是的不動點,
兩點關于直線對稱,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x+4x+3,g(x)為一次函數(shù),若f(g(x))=x+10x+24,求g(x)
的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(I)如果對任意恒成立,求實數(shù)a的取值范圍;
(II)設函數(shù)的兩個極值點分別為判斷下列三個代數(shù)式:
中有幾個為定值?并且是定值請求出;
若不是定值,請把不是定值的表示為函數(shù)并求出的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(I)判斷的奇偶性;
(Ⅱ)設函數(shù)在區(qū)間上的最小值為,求的表達式;
(Ⅲ)若,證明:方程有兩個不同的正數(shù)解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題12分)
已知定義在R上的函數(shù)是奇函數(shù)
(1)求的值;
(2)判斷的單調性,并用單調性定義證明;
(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

同步練習冊答案