7.設(shè)f(α)=$\frac{sin(α-\frac{13π}{2})•tan(α-3π)}{cos(α+\frac{9π}{2})•tan(\frac{7π}{2}+α)}$.
(1)化簡(jiǎn)f(α),并求f(-$\frac{67π}{6}$);
(2)若f(α )=$\frac{2}{5}$,求cosα.

分析 (1)利用誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式化簡(jiǎn)函數(shù)解析式,進(jìn)而利用誘導(dǎo)公式,特殊角的三角函數(shù)值即可得解.
(2)由f(α )=-tanα=$\frac{2}{5}$,利用同角三角函數(shù)基本關(guān)系式可求cosα=±$\sqrt{\frac{1}{1+ta{n}^{2}α}}$的值.

解答 解:(1)f(α)=$\frac{sin(α-\frac{13π}{2})•tan(α-3π)}{cos(α+\frac{9π}{2})•tan(\frac{7π}{2}+α)}$=$\frac{(-cosα)tanα}{(-sinα)cotα}$=-tanα,
可得:f(-$\frac{67π}{6}$)=-tan(-$\frac{67π}{6}$)=tan$\frac{π}{6}$=$\frac{\sqrt{3}}{3}$.
(2)∵f(α )=-tanα=$\frac{2}{5}$,可求:tanα=-$\frac{2}{5}$,
∴cosα=±$\sqrt{\frac{1}{1+ta{n}^{2}α}}$=±$\sqrt{\frac{1}{1+\frac{4}{25}}}$=±$\frac{5\sqrt{29}}{29}$.

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式,特殊角的三角函數(shù)值在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.第三象限角的集合表示為{α|π+2kπ<α<$\frac{3π}{2}$+2kπ,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在四棱錐O-ABCD中,底面ABCD是四邊長(zhǎng)為$\sqrt{2}$的菱形,$∠ABC=\frac{π}{4},OA⊥$底面ABCD,OA=2,M為OA的中點(diǎn),N為BC的中點(diǎn).
(1)證明:平面OAC⊥平面OBD;
(2)求平面BMN與平面OAD所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.用數(shù)學(xué)歸納法證明“$1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{2^n}<f(n)$”時(shí),由n=k不等式成立,證明n=k+1時(shí),左邊應(yīng)增加的項(xiàng)數(shù)是( 。
A.2k-1B.2k-1C.2kD.2k+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知$\frac{{2cos(\frac{3}{2}π+θ)+cos(π+θ)}}{{3sin(π-θ)+2sin(\frac{5}{2}π+θ)}}=\frac{1}{5}$;
(1)求tanθ的值;
(2)求sin2θ+3sinθcosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=$\frac{{x}^{2}}{\sqrt{1-x}}$+lg(2x+1)的定義域?yàn)椋?$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知指數(shù)函數(shù)y=g(x)滿足:g(2)=4,定義域?yàn)镽的函數(shù)f(x)=$\frac{-g(x)+a}{2g(x)+b}$是奇函數(shù).
(1)求a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性(直接寫出結(jié)論不用證明 )
(3)若對(duì)任意的t∈[0,1],不等式f(t2-2t)+f(2t2-k)>0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=-x2+2x+3,x∈[-1,2)
(1)畫出函數(shù)f(x)的圖象; 
(2)根據(jù)函數(shù)f(x)的圖象寫出函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.計(jì)算:
(1)${({2\frac{1}{4}})^{\frac{1}{2}}}-{({-9.6})^0}-{({3\frac{3}{8}})^{-\frac{2}{3}}}+{0.1^{-2}}$
(2)已知x+x-1=3,求$\frac{{{x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}}}{{{x^2}+{x^{-2}}+3}}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案