【題目】如圖,在三棱錐P-ABC中,ACBC,且,AC=BC=2,D,E分別為ABPB中點,PD⊥平面ABC,PD=3.

(1)求直線CE與直線PA夾角的余弦值;

(2)求直線PC與平面DEC夾角的正弦值.

【答案】(1);(2).

【解析】

1)建立空間直角坐標系,確定各點坐標,求出夾角,即可得結(jié)果;

2)求出平面DEC的法向量,其與法向量夾角的余弦的絕對值,即為所求角的正弦值.

建立如圖所示的空間直角坐標系,易知C(00,0),

A(2,0,0),D(1,10),E(,,)P(1,13)

設直線CE與直線PA夾角為,則

整理得

直線CE與直線PA夾角的余弦值;

(2)設直線PC與平面DEC夾角為,

設平面DEC的法向量為,

因為,

所以有

,解得,

即面DEC的一個法向量為,,

.

直線PC與平面DEC夾角的正弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】2020年開始,國家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中語文、數(shù)學、外語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學、生物6門科目中自選3門參加考試(6選3),每科目滿分100分.為了應對新高考,某高中從高一年級1000名學生(其中男生550人,女生 450 人)中,采用分層抽樣的方法從中抽取名學生進行調(diào)查.

(1)已知抽取的名學生中含女生45人,求的值及抽取到的男生人數(shù);

(2)學校計劃在高一上學期開設選修中的“物理”和“地理”兩個科目,為了了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學生進行問卷調(diào)查(假定每名學生在這兩個科目中必須選擇一個科目且只能選擇一個科目),下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表. 請將列聯(lián)表補充完整,并判斷是否有 99%的把握認為選擇科目與性別有關?說明你的理由;

(3)在抽取的選擇“地理”的學生中按分層抽樣再抽取6名,再從這6名學生中抽取2人了解學生對“地理”的選課意向情況,求2人中至少有1名男生的概率.

0.05

0.01

3.841

6.635

參考公式:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖①,在等腰梯形中,,,分別為的中點,,中點現(xiàn)將四邊形沿折起,使平面平面,得到如圖②所示的多面體在圖②中,

(1)證明:;

(2)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐PABCD中,底面ABCD是直角梯形,AD//BC,BC2AD,ADCD,PD⊥平面ABCDEPB的中點.

(1)求證:AE//平面PDC;

(2)BCCDPD,求直線AC與平面PBC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知若橢圓)交軸于,兩點,點是橢圓上異于的任意一點,直線,分別交軸于點,,則為定值.

1)若將雙曲線與橢圓類比,試寫出類比得到的命題;

2)判定(1)類比得到命題的真假,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分10分)選修44,坐標系與參數(shù)方程

已知曲線,直線為參數(shù)).

I)寫出曲線的參數(shù)方程,直線的普通方程;

II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形是某城市的一個區(qū)域的示意圖,陰影部分為街道,各相鄰的兩紅綠燈之間的距離相等,處為紅綠燈路口,紅綠燈統(tǒng)一設置如下:先直行綠燈30秒,再左轉(zhuǎn)綠燈30秒,然后是紅燈1分鐘,右轉(zhuǎn)不受紅綠燈影響,這樣獨立的循環(huán)運行.小明上學需沿街道從處騎行到處(不考慮處的紅綠燈),出發(fā)時的兩條路線()等可能選擇,且總是走最近路線.

1)請問小明上學的路線有多少種不同可能?

2)在保證通過紅綠燈路口用時最短的前提下,小明優(yōu)先直行,求小明騎行途中恰好經(jīng)過處,且全程不等紅綠燈的概率;

3)請你根據(jù)每條可能的路線中等紅綠燈的次數(shù)的均值,為小明設計一條最佳的上學路線,且應盡量避開哪條路線?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左,右焦點分別為,直線與橢圓相交于兩點;當直線經(jīng)過橢圓的下頂點和右焦點時,的周長為,且與橢圓的另一個交點的橫坐標為

1)求橢圓的方程;

2)點內(nèi)一點,為坐標原點,滿足,若點恰好在圓上,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù),當時,函數(shù)有極值.

1)求函數(shù)的極大值;

2)若關于的方程有三個零點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案