分析 (1)連接CD后,根據(jù)圓周角定理及∠BEC為△ABE與△CDE的共公角,我們易得△ABE∽△CDE,根據(jù)相似三角形性質(zhì),結(jié)合比例的性質(zhì),易得答案.
(2)AB是⊙O的直徑所對(duì)的圓周角為直角,易得△ECB為直角三角形,結(jié)合直角三角形斜邊上的中線等于斜邊的一半,我們易得E,F(xiàn),C,B到點(diǎn)D的距離相等,即E,F(xiàn),C,B四點(diǎn)共圓
解答 證明:(1(連接CD,如圖所示:
由圓周角定理,我們可得∠C=∠B
又由∠BEC為△ABE與△CDE的公共角,
∴△ABE∽△CDE,
∴BE:CE=AE:DE,
∴BE•DE=CE•AE
∴BE•DE+AC•CE=CE2…(5分)
(2)∵AB是⊙O的直徑,∴∠ECB=90°,∴CD=$\frac{1}{2}$BE,
∵EF⊥BF,∴FD=$\frac{1}{2}$BE,
∴E,F(xiàn),C,B四點(diǎn)與點(diǎn)D等距,
∴E,F(xiàn),C,B四點(diǎn)共圓 …(10分)
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是相似三角形的判定及性質(zhì),四點(diǎn)共圓的判定,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{\sqrt{6}}{2}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8π | B. | 16π | C. | $\frac{8π}{3}$ | D. | $\frac{16π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com