20.如圖,平面內(nèi)有三個(gè)向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$,其中$\overrightarrow{OA}$與$\overrightarrow{OB}$的夾角為120°,$\overrightarrow{OA}$與$\overrightarrow{OC}$的夾角為θ(0°<θ<60°)且|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,|$\overrightarrow{OC}$|=2$\sqrt{3}$,($\overrightarrow{OA}$+$\overrightarrow{OB}$)•$\overrightarrow{OC}$=3
(1)求θ的度數(shù)
(2)設(shè)$\overrightarrow{a}$=k•$\overrightarrow{OA}$-$\overrightarrow{OC}$
①若$\overrightarrow{a}$⊥$\overrightarrow{AB}$,試求實(shí)數(shù)k的值
②若$\overrightarrow{a}$∥$\overrightarrow{AB}$,試求實(shí)數(shù)k的值.

分析 (1)利用向量數(shù)量積運(yùn)算及三角運(yùn)算即可解得結(jié)論;
(2)利用向量垂直與平行的條件列出等式化簡(jiǎn)即可得出結(jié)論.

解答 解:(1)由($\overrightarrow{OA}$+$\overrightarrow{OB}$)•$\overrightarrow{OC}$=3得2$\sqrt{3}$cosθ+2$\sqrt{3}$cos(120°-θ)=3,即sin(30°+θ)=$\frac{\sqrt{3}}{2}$,
∵0°<θ<60°,∴30°+θ=60°,∴θ=30°.
(2)①∵$\overrightarrow{a}$=k•$\overrightarrow{OA}$-$\overrightarrow{OC}$且$\overrightarrow{a}$⊥$\overrightarrow{AB}$,∴(k•$\overrightarrow{OA}$-$\overrightarrow{OC}$)•$\overrightarrow{AB}$=0,即(k•$\overrightarrow{OA}$-$\overrightarrow{OC}$)•($\overrightarrow{OB}-\overrightarrow{OA}$)=0,
即k$\overrightarrow{OA}•\overrightarrow{OB}$-k${\overrightarrow{OA}}^{2}$-$\overrightarrow{OB}•\overrightarrow{OC}$+$\overrightarrow{OA}•\overrightarrow{OC}$=0,即kcos120°-k-2$\sqrt{3}$cos90°+2$\sqrt{3}$cos30°=0,
整理得$-\frac{1}{2}$k-k+3=0,解得k=2.
②由$\overrightarrow{a}$∥$\overrightarrow{AB}$得,|k•$\overrightarrow{OA}$-$\overrightarrow{OC}$|=$|\overrightarrow{OC}|$,即${k}^{2}{\overrightarrow{OA}}^{2}$-2k$\overrightarrow{OA}•\overrightarrow{OC}$+${\overrightarrow{OC}}^{2}$=${\overrightarrow{OC}}^{2}$,
即k2-2k×2$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=0,即k2-6k=0,
解得:k=6.

點(diǎn)評(píng) 本題主要考查了學(xué)生向量數(shù)量積的運(yùn)算及三角化簡(jiǎn)計(jì)算的能力,以及向量垂直、平行的充要條件,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=2x-alnx(a∈R)
(1)當(dāng)a=1時(shí),求函數(shù)f(x)在(1,f(1)處的切線方程;
(2)記g(x)=x2-f(x).若函數(shù)g(x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2),且不等式g(x1)≥mx2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.求出滿足2∈(-2,x+1,x2+x-4)的所有實(shí)數(shù)x組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.計(jì)算:(-3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(0.002)${\;}^{-\frac{1}{2}}$-10($\sqrt{5}$-2)-1+($\sqrt{2}$-$\sqrt{3}$)0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.解方程:(x2+x)(x2+x-2)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.
(1)若A∪B=A,求實(shí)數(shù)a的值;
(2)若A∩B=A,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.求所有的角α,使得集合{sinα,sin2α,sin3α}={cosα,cos2α,cos3α}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知x,y為實(shí)數(shù),且(x+y)(x-2y)=1,則2x2+y2的最小值為$\frac{2}{3}$($\sqrt{3}$+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知集合A={x|x$≤\frac{a}{2}$},B={x|x<-1},若B⊆A,則實(shí)數(shù)a的取值范圍是(  )
A.a≥-2B.a≤-2C.a>-2D.a<-2

查看答案和解析>>

同步練習(xí)冊(cè)答案