3.已知函數(shù)f(x)=|2x-m|-3x,m≠0.
(Ⅰ)當(dāng)m=3時(shí),求不等式f(x)≤1-2x的解集;
(Ⅱ)若不等式f(x)≤0的解集包含{x丨x≥1},求m的取值范圍.

分析 (Ⅰ)把m=3代入,解不等式|2x-3|-3x≤1-2x即可;(Ⅱ)通過討論m的范圍,得到不等式組,從而求出m的范圍.

解答 解:(Ⅰ)當(dāng)m=3時(shí),由f(x)≤1-2x得:
|2x-3|-3x≤1-2x,
即|2x-3|≤1+x,
∴-1-x≤2x-3≤1+x,
∴$\frac{2}{3}$≤x≤4;
(Ⅱ)由不等式f(x)≤0得:
|2x-m|≤3x⇒$\left\{\begin{array}{l}{x≥\frac{m}{2}}\\{x≥-m}\end{array}\right.$或$\left\{\begin{array}{l}{x<\frac{m}{2}}\\{x≥\frac{m}{5}}\end{array}\right.$,
①若m<0,不等式的解集是:
{x|x≥$\frac{m}{2}$}∪{x|$\frac{m}{5}$≤x<$\frac{m}{2}$}={x|x≥$\frac{m}{5}$},
∵{x|x≥$\frac{m}{5}$}?{x|x≥1}⇒0<m≤5,
②若m<0,不等式的解集是:
{x|x≥-m}∪{x|$\frac{m}{5}$≤x<$\frac{m}{2}$},
∵{x|x≥-m}∪{x|$\frac{m}{5}$≤x<$\frac{m}{2}$}?{x|x≥1},
∴-1≤m<0,
綜上:m的范圍是[-1,0)∪(0,5].

點(diǎn)評(píng) 不同考查了絕對(duì)值不等式的性質(zhì),考查了集合問題,本題是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+(b-1)x+c(a>0),曲線y=f(x)在點(diǎn)P(0,f(0))處的切線方程為y=x+1
(1)求b、c的值;
(2)若過點(diǎn)(0,3)可作曲線g(x)=f(x)-x的三條不同切線,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.空間一線段AB,若其主視圖、左視圖、俯視圖的長(zhǎng)度均為$\sqrt{2}$,則線段AB的長(zhǎng)度為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)g(x)=ax=$\frac{a}{x}$-5lnx,其中a∈R,函數(shù)h(x)=x2-mx+4,其中m∈R.
(Ⅰ)若g(x)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)當(dāng)a=2時(shí),若?x1∈(0,1),?x2∈[1,2],總有g(shù)(x1)≥h(x2)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a=${log}_{2}\frac{1}{3}$,b=lg5,c=ln$\sqrt{e}$,則a、b、c的大小關(guān)系為( 。
A.<b<aB.c<a<bC.a<c<bD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,在△ABC中,$\overrightarrow{AD}=\frac{2}{3}\overrightarrow{AC}$,$\overrightarrow{BP}=\frac{1}{3}\overrightarrow{BD}$,若$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,則λ+μ的值為( 。
A.$\frac{8}{9}$B.$\frac{4}{9}$C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=|x-$\frac{1}{2}$|,x∈R
(1)求不等式f(-x)+f(x-1)>5的解集;
(2)設(shè)g(x)=f2(x)+$\frac{55}{4}$,且|x-a|<1,求證:|g(x)-g(a)|<2(|a|+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=x3-3x2+6在x=2時(shí)取得極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知?jiǎng)狱c(diǎn)P(x,y)滿足$\left\{\begin{array}{l}{2x+y≤2}\\{x≥0}\\{(x+\sqrt{{x}^{2}+1})(y+\sqrt{{y}^{2}+1})≥1}\end{array}\right.$,則x2+y2+2y的最小值為0.

查看答案和解析>>

同步練習(xí)冊(cè)答案