【題目】已知在的展開式中,第5項的系數(shù)與第3項的系數(shù)之比是56:3.
(1)求展開式中的所有有理項;
(2)求展開式中系數(shù)絕對值最大的項.
(3)求的值.
【答案】(1)T1=x5和T7=13400 ,(2),(3).
【解析】試題分析:(1)求二項展開式中特定項,關(guān)鍵在從通項出發(fā),找尋對應(yīng)等量關(guān)系. 由解得n=10,因為通項: ,當(dāng)5﹣為整數(shù),r可取0,6,于是有理項為T1=x5和T7=13400,(2)求展開式中系數(shù)絕對值最大的項,通過列不等式解決. 設(shè)第r+1項系數(shù)絕對值最大,則,解得,于是r只能為7,所以系數(shù)絕對值最大的項為,(3)本題是二項式定理的逆向應(yīng)用,關(guān)鍵將式子轉(zhuǎn)化符合二項展開式的特征.
(1)由解得n=10 (2分)
因為通項: (3分)
當(dāng)5﹣為整數(shù),r可取0,6 (4分)
展開式是常數(shù)項,于是有理項為T1=x5和T7=13400 (6分)
(2)設(shè)第r+1項系數(shù)絕對值最大,則(8分)
注:等號不寫扣(1分)
解得,于是r只能為7 (10分)
所以系數(shù)絕對值最大的項為(11分)
(3)
13分
.16分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓: 的左,右焦點分別為, .點是橢圓在軸上方的動點,且△的周長為16.
(1)求橢圓的方程;
(2)設(shè)點到△三邊的距離均相等.
①當(dāng)時,求點的坐標(biāo);
②求證:點在定橢圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)療研究所開發(fā)一種新藥,如果成人按規(guī)定的劑量服用,據(jù)監(jiān)測:服藥后每毫升血液中的含藥量y與時間t之間近似滿足如圖所示的曲線.
(1)寫出服藥后y與t之間的函數(shù)關(guān)系式;
(2)據(jù)測定,每毫升血液中含藥量不少于4 μg時治療疾病有效,假若某病人一天中第一次服藥為上午7:00,問:一天中怎樣安排服藥時間(共4次)效果最佳?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與圓 的公共點的軌跡為曲線,且曲線與軸的正半軸相交于點.若曲線上相異兩點滿足直線的斜率之積為.
(1)求的方程;
(2)證明直線恒過定點,并求定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(-x2+x-1)ex,其中e是自然對數(shù)的底數(shù).
(1)求曲線f(x)在點(1,f(1))處的切線;
(2)若方程f(x)=x3+x2+m有3個不同的根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司從1999年的年產(chǎn)值100萬元,增加到10年后2009年的500萬元,如果每年產(chǎn)值增長率相同,則每年的平均增長率是多少?(ln(1+x)≈x,lg2=0.3,ln10=2.30)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)電飯煲,每年需投入固定成本40萬元,每生產(chǎn)1萬件還需另投入16萬元的變動成本,設(shè)該公司一年內(nèi)共生產(chǎn)電飯煲萬件并全部銷售完,每一萬件的銷售收入為萬元,且(),該公司在電飯煲的生產(chǎn)中所獲年利潤為(萬元),(注:利潤=銷售收入-成本)
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬件)的函數(shù)解析式,并求年利潤的最大值;
(2)為了讓年利潤不低于2360萬元,求年產(chǎn)量的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個樹形圖依據(jù)下列規(guī)律不斷生長,1個空心圓點到下一行僅生長出1個實心圓點,1個實心圓點到下一行生長出1個實心圓點和1個空心圓點,則第11行的實心圓點的個數(shù)是
A. 21 B. 34 C. 55 D. 89
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com