已知正四棱錐的底面邊長(zhǎng)為6,高為4,中截面把棱錐截成一個(gè)小棱錐和一個(gè)棱臺(tái),則棱臺(tái)的側(cè)面積為
 
考點(diǎn):棱柱、棱錐、棱臺(tái)的側(cè)面積和表面積
專(zhuān)題:計(jì)算題,空間位置關(guān)系與距離
分析:求出棱臺(tái)的上底長(zhǎng)為3,下底長(zhǎng)為6,高為
5
2
,即可求出棱臺(tái)的側(cè)面積.
解答: 解:∵正四棱錐的底面邊長(zhǎng)為6,高為4,
∴正四棱錐的斜高為5,
∵中截面把棱錐截成一個(gè)小棱錐和一個(gè)棱臺(tái),
∴棱臺(tái)的上底長(zhǎng)為3,下底長(zhǎng)為6,高為
5
2
,
∴棱臺(tái)的側(cè)面積為4×
3+6
2
×
5
2
=45.
故答案為:45.
點(diǎn)評(píng):本題考查棱臺(tái)的側(cè)面積,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):
1-2cos2α
1-2sin2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x+1
e2x

(1)當(dāng)x∈R時(shí),求f(x)的最大值;
(2)當(dāng)x≥0時(shí),若(x+1)f(x)≤m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c滿(mǎn)足條件;①y=f(x)的圖象過(guò)點(diǎn)
1
1
,②當(dāng)x=-1時(shí),y=f(x)取得最小值是0.
(1)求f(x)的解析式;
(2)若g(x)=f(x)-k2x在
-1
1
上是單調(diào)函數(shù),求k的取值范圍;
(3)是否存在自然數(shù)m,使得關(guān)于x的不等式f(x-m)≤x在區(qū)間[1,
4
上有解?若存在,求出自然數(shù)m的取值集合,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若三階行列式
.
12k
-237
-31-2
.
第2行第1列元素的代數(shù)余子式為6,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正三棱錐P-ABC的體積為
6
2
,外接球球心為O,且滿(mǎn)足
OA
+
OB
+
OC
=
0
,則正三棱錐P-ABC的外接球半徑為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(2x+1)n=a0+a1x+a2x2+…+anxn中令x=0,就可以求出常數(shù)項(xiàng),即1=a0.請(qǐng)你根據(jù)其中蘊(yùn)含的解題方法研究下列問(wèn)題;若ex=a0+a1x+a2x2+a3x3+a4x4+…+anxn+…,且n≥2,n∈N,則a1+
a2
a0
+
a3
a1
+…+
an
an-2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sinx>cosx的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求導(dǎo):f(x)=
a+blnx
x+1

查看答案和解析>>

同步練習(xí)冊(cè)答案