設(shè)函數(shù)f(x)=ax-(a+1)ln(x+1),其中a≥-1,求f(x)的單調(diào)區(qū)間.
分析:先對函數(shù)進(jìn)行求導(dǎo),根據(jù)導(dǎo)函數(shù)大于0原函數(shù)單調(diào)遞增,導(dǎo)函數(shù)小于0原函數(shù)單調(diào)遞減可得答案.
解答:解:由已知得函數(shù)f(x)的定義域?yàn)椋?1,+∞),且
f′(x)=(a≥-1),
(1)當(dāng)-1≤a≤0時(shí),f′(x)<0,函數(shù)f(x)在(-1,+∞)上單調(diào)遞減,
(2)當(dāng)a>0時(shí),由f′(x)=0,解得
x=.f′(x)、f(x)隨x的變化情況如下表
x |
(-1,) |
|
(,+∞) |
f′(x) |
- |
0 |
+ |
f(x) |
|
極小值 |
|
從上表可知
當(dāng)
x∈(-1,)時(shí),f′(x)<0,函數(shù)f(x)在
(-1,)上單調(diào)遞減.
當(dāng)
x∈(,+∞)時(shí),f′(x)>0,函數(shù)f(x)在
(,+∞)上單調(diào)遞增.
綜上所述:
當(dāng)-1≤a≤0時(shí),函數(shù)f(x)在(-1,+∞)上單調(diào)遞減.
當(dāng)a>0時(shí),函數(shù)f(x)在
(-1,)上單調(diào)遞減,函數(shù)f(x)在
(,+∞)上單調(diào)遞增.
點(diǎn)評:本題主要考查導(dǎo)函數(shù)的正負(fù)和原函數(shù)的增減性的關(guān)系.屬基礎(chǔ)題.