已知函數(shù)f(x)=
1
3
x3-2x2+3x(x∈R)的圖象為曲線C.
(1)求曲線C上任意一點(diǎn)處的切線的斜率的取值范圍;
(2)若曲線C上存在兩點(diǎn)處的切線互相垂直,求其中一條切線與曲線C的切點(diǎn)的橫坐標(biāo)取值范圍;
(3)試問(wèn):是否存在一條直線與曲線C同時(shí)切于兩個(gè)不同點(diǎn)?如果存在,求出符合條件的所有直線方程;若不存在,說(shuō)明理由.
(1)f'(x)=x2-4x+3,則f′(x)=(x-2)2-1≥-1,
即曲線C上任意一點(diǎn)處的切線的斜率的取值范圍是[-1,+∞);------------(4分)
(2)由(1)可知,
k≥-1
-
1
k
≥-1
---------------------------------------------------------(6分)
解得-1≤k<0或k≥1,由-1≤x2-4x+3<0或x2-4x+3≥1
得:x∈(-∞,2-
2
]∪(1,3)∪[2+
2
,+∞);-------------------------------(9分)
(3)設(shè)存在過(guò)點(diǎn)A(x1,y1)的切線曲線C同時(shí)切于兩點(diǎn),另一切點(diǎn)為B(x2,y2),x1≠x2,
則切線方程是:y-(
1
3
x31
-2
x21
+3x1)=(
x21
-4x1+3)(x-x1),
化簡(jiǎn)得:y=(
x21
-4x1+3)x+(-
2
3
x31
+2
x21
),--------------------------(11分)
而過(guò)B(x2,y2)的切線方程是y=(
x22
-4x1+3)x+(-
2
3
x32
+2
x22
),--------------------------(,
由于兩切線是同一直線,
則有:
x21
-4x1+3=
x22
-4x1+3,得x1+x2=4,----------------------(13分)
又由-
2
3
x31
+2
x21
=-
2
3
x32
+2
x22
,
即-
2
3
(x1-x2)(
x21
+x1x2+
x22
)+(x1-x2)(x1+x2)=0
-
1
3
x21
+x1x2+
x22
)+4=0,即x1(x1+x2)+
x22
-12=0
即(4-x2)×4+
x22
-12=0,
x22
-4x2+4=0
得x2=2,但當(dāng)x2=2時(shí),由x1+x2=4得x1=2,這與x1≠x2矛盾.
所以不存在一條直線與曲線C同時(shí)切于兩點(diǎn).----------------------------------(16分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),則實(shí)數(shù)x的取值范圍是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1,x∈Q
0,x∉Q
,則f[f(π)]=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1-x
ax
+lnx(a>0)

(1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=1時(shí),求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)當(dāng)a=1時(shí),求證對(duì)任意大于1的正整數(shù)n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,則下列結(jié)論中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=1+logax(a>0,a≠1),滿足f(9)=3,則f-1(log92)的值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案