已知A,B均為銳角,A+B>
π
2
,求證:對任意x∈(0,+∞),有f(x)=(
cosA
sinB
x+(
cosB
sinA
x<2.
考點:同角三角函數(shù)基本關系的運用,運用誘導公式化簡求值
專題:函數(shù)的性質及應用,三角函數(shù)的求值
分析:由已知中A,B均為銳角,A+B>
π
2
,可得A>
π
2
-B,B>
π
2
-A,進而結合誘導公式和余弦函數(shù)的單調(diào)性,可得0<cosA<sinB,且0<cosB<sinA,再由指數(shù)函數(shù)的圖象和性質證得結論.
解答: 證明:∵A,B均為銳角,A+B>
π
2
,
∴A>
π
2
-B>0,B>
π
2
-A>0,
∴0<cosA<cos(
π
2
-B)=sinB,且0<cosB<cos(
π
2
-A)=sinA,
∴0<
cosA
sinB
<1,且0<
cosB
sinA
<1,
∴當x∈(0,+∞)時,
f(x)=(
cosA
sinB
x+(
cosB
sinA
x<1+1=2
點評:本題考查的知識點是誘導公式,余弦函數(shù)的單調(diào)性,指數(shù)函數(shù)的圖象和性質,是函數(shù)圖象和性質的綜合應用,難度中檔.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設f(x)=ax+b,其中a,b為實數(shù),f1(x)=f(x),fn+1(x)=f(fn(x)),n=1,2,3,…若f7(x)=128x+508,則a+b=( 。
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設i是虛數(shù)單位,那么復數(shù)(1-i)i等于( 。
A、-1+iB、1+i
C、-1-iD、1-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設n=
π
2
0
6sinxdx,則二項式(x-
2
x
n的展開式中,x2項的系數(shù)為( 。
A、60B、75C、90D、120

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的離心率e=
2
2
,長軸的左右端點分別為A1(-
2
,0),A2
2
,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設動直線l:y=kx+b與曲線C有且只有一個公共點P,且與直線x=2相交于點Q.問在x軸上是否存在定點N,使得以PQ為直徑的圓恒過定點N,若存在,求出N點坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某公司為招聘新員工設計了一個面試方案:應聘者從6道備選題中一次性隨機抽取3道題,按照題目要求獨立完成.規(guī)定:至少正確完成其中2道題的便可通過.已知6道備選題中應聘者甲有4道題能正確完成,2道題不能完成;應聘者乙每題正確完成的概率都是
2
3
,且每題正確完成與否互不影響.
(Ⅰ)分別求甲、乙兩人正確完成面試題數(shù)的分布列,并計算其數(shù)學期望;
(Ⅱ)請分析比較甲、乙兩人誰的面試通過的可能性大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩名運動員參加“選拔測試賽”,在相同的條件下,兩人5次測試的成績(單位:分)記錄如下:
甲  86   77   92   72   78
乙  78   82   88   82   95
(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)現(xiàn)要從甲乙二人中選派一名運動員參加比賽,你認為選派誰參賽更好?說明理由(不用計算);
(Ⅲ)若將頻率視為概率,對運動員甲在今后三次測試成績進行預測,記這三次成績高于80分的次數(shù)為X,求X的分布列和數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項數(shù)列{an}中,其前n項和為Sn,且an=2
Sn
-1.
(1)求數(shù)列{an}的通項公式;
(2)設Tn是數(shù)列{
2
an
+
an+1
}的前n項和,Rn是數(shù)列{
a1a2…an
(a1+1)(a2+1)…(an+1)
}的前n項和,求證:Rn<Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinx•cos(x-
π
6
)+cos2x-
1
2

(Ⅰ)求函數(shù)f(x)的最大值,并寫出f(x)取最大值x時的取值集合;
(Ⅱ)在△ABC中,角A,B,C的對邊分別為a,b,c,若f(A)=
1
2
,b+c=3.求a的最小值.

查看答案和解析>>

同步練習冊答案