已知O為坐標(biāo)原點(diǎn),=(-1,1),=(-5,5)集合A={|||=2},,∈A且(λ∈r,且λ≠0)則=   
【答案】分析:根據(jù)向量的線性運(yùn)算,可得點(diǎn)N坐標(biāo)為(4,-4)且R點(diǎn)的軌跡是以N為圓心,半徑為2的圓.進(jìn)而得到P、Q在圓N上,且M、P、Q三點(diǎn)共線,在Rt△MNS中利用勾股定理,并結(jié)合圓的切割線定理即可算出的值.
解答:解:∵=(-1,1),=(-5,5)
∴向量=-=(4,-4),即點(diǎn)N坐標(biāo)為(4,-4)
∵集合A={|||=2}
∴點(diǎn)R到N的距離等于2(常數(shù)),故R點(diǎn)的軌跡是以N為圓心,半徑為2的圓
,∈A且(λ∈r,且λ≠0)
∴P、Q在圓N上,且M、P、Q三點(diǎn)共線
設(shè)過M的直線與圓N相切于點(diǎn)S,連接NS、NM,則
Rt△MNS中,MN=5,NS=2,可得MS2=MN2-NS2=50-4=46
由切割線定理,可得=2=46
故答案為:46
點(diǎn)評(píng):本題以向量為載體,求動(dòng)點(diǎn)的軌跡方程并求數(shù)量積的值.著重考查了平面向量的線性運(yùn)算、平面向量數(shù)量積的運(yùn)算和動(dòng)點(diǎn)軌跡方程的求法等知識(shí),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標(biāo)原點(diǎn),點(diǎn)A(2,1),點(diǎn)P在區(qū)域
y≤x
x+y≥2
y>3x-6
內(nèi)運(yùn)動(dòng),則
OA
OP
的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標(biāo)原點(diǎn),M(cosx,2
3
),N(2cosx,sinxcosx+
3
6
a)
其中x∈R,a為常數(shù),
設(shè)函數(shù)f(x)=
OM
ON

(Ⅰ)求函數(shù)y=f(x)的表達(dá)式和對稱軸方程;
(Ⅱ)若角C為△ABC的三個(gè)內(nèi)角中的最大角,且y=f(C)的最小值為0,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標(biāo)原點(diǎn),點(diǎn)M(3,2),若N(x,y)滿足不等式組
x≥1
y≥0
x+y≤4
,則
OM
ON
 的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標(biāo)原點(diǎn),A,B兩點(diǎn)的坐標(biāo)均滿足不等式組
x-3y+1≤0
x+y-3≤0
x-1≥0
,則tan∠AOB的最大值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標(biāo)原點(diǎn),M(cosx,2
3
),N(2cosx,sinxcosx+
3
6
a)
其中x∈R,a為常數(shù),設(shè)函數(shù)f(x)=
OM
ON

(1)求函數(shù)y=f(x)的表達(dá)式;
(2)若角C∈[
π
3
,π)
且y=f(C)的最小值為0,求a的值;
(3)在(2)的條件下,試畫出y=f(x)(x∈[0,π])的簡圖.

查看答案和解析>>

同步練習(xí)冊答案