【題目】已知數(shù)列按如下規(guī)律分布(其中表示行數(shù),表示列數(shù)),若,則下列結(jié)果正確的是( )
第1列 | 第2列 | 第3列 | 第4列 | … | ||
第1行 | 1 | 3 | 9 | 19 | 33 | |
第2行 | 7 | 5 | 11 | 21 | ||
第3行 | 17 | 15 | 13 | 23 | ||
第4行 | 31 | 29 | 27 | 25 | ||
┇ |
A.,B.,C.,D.,
【答案】C
【解析】
可以看出所排都是奇數(shù)從小到大排起.規(guī)律是先第一列和第一行,再第二列和第二行,再第三列第三行,并且完整排完次后,排出的數(shù)呈正方形.可先算是第幾個奇數(shù),這個奇數(shù)在哪兩個完全平方數(shù)之間,再去考慮具體的位置.
每排完次后,數(shù)字呈現(xiàn)邊長是的正方形,所以排次結(jié)束后共排了個數(shù).
,說明是個奇數(shù).
而,故一定是行,
而從第個數(shù)算起,第個數(shù)是倒數(shù)第個,根據(jù)規(guī)律第個數(shù)排在第行第列,所以第個數(shù)是第行第列,即在第行第列.
故.
故選:C.
科目:高中數(shù)學 來源: 題型:
【題目】給出下列三個命題,其中所有錯誤命題的序號是______.
拋物線的準線方程為;
過點作與拋物線只有一個公共點的直線t僅有1條;
是拋物線上一動點,以P為圓心作與拋物線準線相切的圓,則這個圓一定經(jīng)過一個定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為常數(shù)
(1)當在處取得極值時,若關于x的方程 在上恰有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍.
(2)若對任意的,總存在,使不等式 成立,求實數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知x0,x0+是函數(shù)f(x)=cos2(wx﹣)﹣sin2wx(ω>0)的兩個相鄰的零點
(1)求的值;
(2)若對任意,都有f(x)﹣m≤0,求實數(shù)m的取值范圍.
(3)若關于的方程在上有兩個不同的解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓.
(1)求圓心C的坐標及半徑r的大小;
(2)已知不過原點的直線l與圓C相切,且在x軸、y軸上的截距相等,求直線l的方程;
(3)從圓外一點向圓引一條切線,切點為M,O為坐標原點,且,求點P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的定義域為,當時,,且對任意的實數(shù),,恒成立,若數(shù)列滿足()且,則下列結(jié)論成立的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】扎比瓦卡是2018年俄羅斯世界杯足球賽吉祥物,該吉祥物以西伯利亞平原狼為藍本.扎比瓦卡,俄語意為“進球者”.某廠生產(chǎn)“扎比瓦卡”的固定成本為15000元,每生產(chǎn)一件“扎比瓦卡”需要增加投入20元,根據(jù)初步測算,每個銷售價格滿足函數(shù),其中x是“扎比瓦卡”的月產(chǎn)量(每月全部售完).
(1)將利潤表示為月產(chǎn)量的函數(shù);
(2)當月產(chǎn)量為何值時,該廠所獲利潤最大?最大利潤是多少?(總收益=總成本+利潤).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.點(2,0)關于直線y=x+1的對稱點為(﹣1,3)
B.過(x1,y1),(x2,y2)兩點的直線方程為
C.經(jīng)過點(1,1)且在x軸和y軸上截距都相等的直線方程為x+y﹣2=0或x﹣y=0
D.直線x﹣y﹣4=0與兩坐標軸圍成的三角形的面積是8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com