【題目】已知橢圓:的左焦點為.
(1)求橢圓的離心率;
(2)設(shè)為坐標(biāo)原點,為直線上一點,過作的垂線交橢圓于,.當(dāng)四邊形是平行四邊形時,求四邊形的面積.
【答案】(1);(2)
【解析】
(1)由題意可得,,,再結(jié)合求出,即可得橢圓的離心率;
(2)設(shè),由求出直線方程,設(shè),,聯(lián)立直線與橢圓的方程并消元,由韋達(dá)定理得到根與系數(shù)的關(guān)系,由四邊形是平行四邊形得到,從而解出,即可計算四邊形的面積.
解:(1)由題意可得,,,
又由,,解得,
橢圓的離心率.
(2)設(shè)點的坐標(biāo)為,
則直線的斜率,
當(dāng)時,直線的斜率,直線的方程是.
當(dāng)時,直線的方程是,也滿足方程,
設(shè),,
將直線的方程與橢圓的方程聯(lián)立,得,
消去,得,
其判別式,
,,,
四邊形是平行四邊形,
,即,
,
,
解得,
,
,
平行四邊形的面積為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年,中國的國內(nèi)生產(chǎn)總值(GDP)已經(jīng)達(dá)到100億元人民幣,位居世界第二,這其中實體經(jīng)濟的貢獻(xiàn)功不可沒,實體經(jīng)濟組織一般按照市場化原則運行,某生產(chǎn)企業(yè)一種產(chǎn)品的成本由原料成本及非原料成本組成,每件產(chǎn)品的非原料成本(元)與生產(chǎn)該產(chǎn)品的數(shù)量(千件)有關(guān),經(jīng)統(tǒng)計得到如下數(shù)據(jù):
根據(jù)以上數(shù)據(jù)繪制了如下的散點圖
現(xiàn)考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對兩個變量關(guān)系進(jìn)行擬合,為此變換如下:令,則,即與也滿足線性關(guān)系,令,則,即也滿足線線關(guān)系,這樣就可以使用最小二乘法求得非線性回歸方程,已求得用指數(shù)函數(shù)模型擬合的回歸方程為與的相關(guān)系數(shù),其他參考數(shù)據(jù)如下(其中)
(1)求指數(shù)函數(shù)模型和反比例函數(shù)模型中關(guān)于的回歸方程;
(2)試計算與的相關(guān)系數(shù),并用相關(guān)系數(shù)判斷:選擇反比例函數(shù)和指數(shù)函數(shù)兩個模型中哪一個擬合效果更好(精確到0.01)?
(3)根據(jù)(2)小題的選擇結(jié)果,該企業(yè)采用訂單生產(chǎn)模式(即根據(jù)訂單數(shù)量進(jìn)行生產(chǎn),產(chǎn)品全部售出),根據(jù)市場調(diào)研數(shù)據(jù),該產(chǎn)品定價為100元時得到簽到訂單的情況如下表:
訂單數(shù)(千件) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
概率 |
已知每件產(chǎn)品的原來成本為10元,試估算企業(yè)的利潤是多少?(精確到1千元)
參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別是:相關(guān)系數(shù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,為橢圓的右焦點,且橢圓上的點到的距離的最小值為,過作直線交橢圓于兩點,點.
(1)求橢圓的方程;
(2)是否存在這樣的直線,使得以,為鄰邊的平行四邊形為矩形?若存在,求出直線的斜率;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關(guān)的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個數(shù)列,則該數(shù)列各項之和為( )
A.56383B.57171C.59189D.61242
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程(t為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C2的極坐標(biāo)方程為ρ=4sinθ.
(1)求C1的直角坐標(biāo)方程與C2的直角坐標(biāo)方程;
(2)已知射線與C1交于O,P兩點,與C2交于O,Q兩點,且Q為OP的中點,求α.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種新型嫁接巨豐葡萄,在新疆地區(qū)種植一般畝產(chǎn)不低于5千斤,產(chǎn)量高的達(dá)到上萬斤.受嫁接年限的影響,其產(chǎn)量一般逐年衰減,若在新疆地區(qū)平均畝產(chǎn)量低于5千斤,則從新嫁接.以下是新疆某地區(qū)從2014年開始嫁接后每年的平均畝產(chǎn)量y(單位:千斤)的數(shù)據(jù)表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號x | 1 | 2 | 3 | 4 | 5 |
平均畝產(chǎn)量y | 8.2 | 7.8 | 7.2 | 6.6 | 5.4 |
(1)求y關(guān)于x的線性回歸方程;
(2)利用(1)中的回歸直線方程,預(yù)計哪一年開始從新嫁接.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為貫徹落實黨中央全面建設(shè)小康社會的戰(zhàn)略部署,某貧困地區(qū)的廣大黨員干部深入農(nóng)村積極開展“精準(zhǔn)扶貧”工作.經(jīng)過多年的精心幫扶,截至2018年底,按照農(nóng)村家庭人均年純收入8000元的小康標(biāo)準(zhǔn),該地區(qū)僅剩部分家庭尚未實現(xiàn)小康.現(xiàn)從這些尚未實現(xiàn)小康的家庭中隨機抽取50戶,得到這50戶家庭2018年的家庭人均年純收入的頻率分布直方圖,如圖.
注:在頻率分布直方圖中,同一組數(shù)據(jù)用該區(qū)間的中點值作代表.
(1)估計該地區(qū)尚未實現(xiàn)小康的家庭2018年家庭人均年純收入的平均值;
(2)2019年7月,為估計該地能否在2020年全面實現(xiàn)小康,收集了當(dāng)?shù)刈钬毨У囊粦艏彝?/span>2019年1至6月的人均月純收入的數(shù)據(jù),作出散點圖如下.
根據(jù)相關(guān)性分析,發(fā)現(xiàn)其家庭人均月純收入與時間代碼之間具有較強的線性相關(guān)關(guān)系(記2019年1月、2月……分別為,,…,依此類推).試預(yù)測該家庭能否在2020年實現(xiàn)小康生活.
參考數(shù)據(jù):,.
參考公式:線性回歸方程中,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)求函數(shù)的極值;
(2)當(dāng)時,若函數(shù)有兩個極值點,且,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com