【題目】某種產(chǎn)品的廣告費(fèi)用支出x(萬元)與銷售額y(萬元)之間有如下的對應(yīng)數(shù)據(jù):
(1)畫出散點(diǎn)圖;
(2)求回歸直線方程;
(3)據(jù)此估計(jì)廣告費(fèi)用為9萬元時(shí),銷售收入y的值.
注:①參考公式:線性回歸方程系數(shù)公式;
②參考數(shù)據(jù):
【答案】(1)詳見解析(2)y=6.5x+17.5(3)當(dāng)x=9時(shí),預(yù)報(bào)y的值為y=76
【解析】
(1)根據(jù)表中所給的五對數(shù)據(jù),得到五個(gè)有序數(shù)對,在平面直角坐標(biāo)系中畫出點(diǎn),得到散點(diǎn)圖.
(2)先做出橫標(biāo)和縱標(biāo)的平均數(shù),得到這組數(shù)據(jù)的樣本中心點(diǎn),利用最小二乘法做出線性回歸方程的系數(shù),再做出a的值,協(xié)會粗線性回歸方程.
(3)把所給的x的值代入線性回歸方程,求出y的值,這里的y的值是一個(gè)預(yù)報(bào)值,或者說是一個(gè)估計(jì)值.
解:(1)根據(jù)表中所給的五對數(shù)據(jù),得到五個(gè)有序數(shù)對,在平面直角坐標(biāo)系中畫出點(diǎn),得到散點(diǎn)圖.
(2)∵=5,=50
∴==6.5
∴=-b=50-6.5×5=17.5
∴回歸直線方程為y=6.5x+17.5
(3)當(dāng)x=9時(shí),預(yù)報(bào)y的值為y=9×6.5+17.5=76.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (是自然對數(shù)的底數(shù))
(1)求證:
(2)若不等式在上恒成立,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某個(gè)體經(jīng)營者把開始六個(gè)月試銷A、B兩種商品的逐月投資與所獲純利潤列成下表:
投資A商品金額(萬元) | 1 | 2 | 3 | 4 | 5 | 6 |
獲純利潤(萬元) | 0.65 | 1.39 | 1.85 | 2 | 1.84 | 1.40 |
投資B商品金額(萬元) | 1 | 2 | 3 | 4 | 5 | 6 |
獲純利潤(萬元) | 0.25 | 0.49 | 0.76 | 1 | 1.26 | 1.51 |
該經(jīng)營者準(zhǔn)備下月投入12萬元經(jīng)營這兩種產(chǎn)品,但不知投入A、B兩種商品各多少才最合算.請你幫助制定一下資金投入方案,使得該經(jīng)營者能獲得最大利潤,并按你的方案求出該經(jīng)營者下月可獲得的最大利潤(結(jié)果保留兩個(gè)有效數(shù)字).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面是追蹤調(diào)查200個(gè)某種電子元件壽命(單位:)頻率分布直方圖,如圖:
其中300-400、400-500兩組數(shù)據(jù)丟失,下面四個(gè)說法中有且只有一個(gè)與原數(shù)據(jù)相符,這個(gè)說法是( )
①壽命在300-400的頻數(shù)是90;
②壽命在400-500的矩形的面積是0.2;
③用頻率分布直方圖估計(jì)電子元件的平均壽命為:
④壽命超過的頻率為0.3
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列隨機(jī)事件:
①某射手射擊一次,可能命中環(huán),環(huán),環(huán),,環(huán);
②一個(gè)小組有男生人,女生人,從中任選人進(jìn)行活動(dòng)匯報(bào);
③一只使用中的燈泡壽命長短;
④拋出一枚質(zhì)地均勻的硬幣,觀察其出現(xiàn)正面或反面的情況;
⑤中秋節(jié)前夕,某市有關(guān)部門調(diào)查轄區(qū)內(nèi)某品牌的月餅質(zhì)量,給該品牌月餅評“優(yōu)”或“差”.
這些事件中,屬于古典概型的是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在古代,直角三角形中較短的直角邊稱為“勾”,較長的直角邊稱為“股”,斜邊稱為“弦”.三國時(shí)期吳國數(shù)學(xué)家趙爽用“弦圖”( 如圖) 證明了勾股定理,證明方法敘述為:“按弦圖,又可以勾股相乘為朱實(shí)二,倍之為朱實(shí)四,以勾股之差自相乘為中黃實(shí),加差實(shí),亦成弦實(shí).”這里的“實(shí)”可以理解為面積.這個(gè)證明過程體現(xiàn)的是這樣一個(gè)等量關(guān)系:“兩條直角邊的乘積是兩個(gè)全等直角三角形的面積的和(朱實(shí)二 ),4個(gè)全等的直角三角形的面積的和(朱實(shí)四) 加上中間小正方形的面積(黃實(shí)) 等于大正方形的面積(弦實(shí))”. 若弦圖中“弦實(shí)”為16,“朱實(shí)一”為,現(xiàn)隨機(jī)向弦圖內(nèi)投入一粒黃豆(大小忽略不計(jì)),則其落入小正方形內(nèi)的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱的各棱長均為2, 面,E,F分別為棱的中點(diǎn).
(1)求證:直線BE∥平面;
(2)平面與直線AB交于點(diǎn)M,指出點(diǎn)M的位置,說明理由,并求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com