已知函數(shù)f(x)=(a+1)lnx+x2-x (a∈R),
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)設(shè)a>0,如果對(duì)任意x1,x2∈(0,+∞),均有f(x1)-f(x2)>3|x1-x2|,求a的取值范圍.
考點(diǎn):導(dǎo)數(shù)在最大值、最小值問(wèn)題中的應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專(zhuān)題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)當(dāng)a=1時(shí),求函數(shù)的導(dǎo)數(shù)即可求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系即可討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)將不等式進(jìn)行轉(zhuǎn)化,即可得到結(jié)論.
解答: 解:(I)由題,a=1時(shí),f(1)=0,f′(1)=3,故所求切線方程為3x-y-3=0;  …(4分)
(Ⅱ) f(x)定義域?yàn)椋?,+∞),f′(x)=
a+1
x
+2x-1=
2x2-x+a+1
x
,△=1-8(a+1)=-8a-7,
①a≥-
7
8
時(shí),f(x)在(0,+∞)上為增函數(shù);
②-1<a<-
7
8
時(shí),f(x)增區(qū)間為(0,
1-
-8a-7
4
),(
1+
-8a-7
4
,+∞),
減區(qū)間為(
1-
-8a-7
4
,
1+
-8a-7
4
);
③a≤-1時(shí),f(x)增區(qū)間為),(
1+
-8a-7
4
,+∞),減區(qū)間為(0,
1-
-8a-7
4
);(8分)
( III) 由( II)a>0時(shí),f(x)在(0,+∞)上為增函數(shù),不妨設(shè)x1>x2,
則有f(x1)-f(x2)>3(x1-x2),即f(x1)-x1>f(x2)-3x2恒成立,
故y=f(x)-3x在(0,+∞)上為增函數(shù),y′=
a+1
x
+2x-4≥0
,
即2
2(a+1)
-4≥0

解得a≥1,
即a的取值范圍是[1,+∞).
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的綜合應(yīng)用,考查導(dǎo)數(shù)的幾何意義以及函數(shù)單調(diào)性和最值與導(dǎo)數(shù)之間的關(guān)系,綜合性較強(qiáng),運(yùn)算量較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)在定義域D上存在x1,x2,當(dāng)x1≠x2時(shí)
f(x1)-f(x2)
x1-x2
>0,則稱f(x)為“非減函數(shù)”.則以下函數(shù)是“非減函數(shù)”的是
 
.(填上所有正確結(jié)論的序號(hào))
①y=1;                   
②y=|2x-1|;
③y=log 
1
2
x+1;
④y=
x-1
x+1
,x∈(0,1);
⑤y=x 
1
3
,x∈(-2,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,等邊△ABC的邊長(zhǎng)為a,將它沿平行于BC的線段PQ折起,使平面A′PQ⊥平面BPQC,若折疊后A′B的長(zhǎng)為d,則d的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下表給出了某校500名12歲男孩中用隨機(jī)抽樣得出的120人的身高(單位cm)
區(qū)間界限[122,126)[126,130)[130,134)[134,138)[138,142)[142,146)
人數(shù)5810223320 
區(qū)間界限[146,150)[150,154)[154,158) 
人數(shù)1165
(1)列出樣本頻率分布表﹔畫(huà)出頻率分布直方圖;
(2)估計(jì)身高小于134cm的人數(shù)占總?cè)藬?shù)的百分比;
(3)并根據(jù)直方圖計(jì)算這120人的身高平均數(shù),眾數(shù),中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,M、N分別為AB、B1C的中點(diǎn),設(shè)
AB
=
a
,
AD
=
b
AA1
=
c
,若
MN
=x
a
+y
b
+z
c
,則( 。
A、x=
1
2
,y=
1
3
,z=
1
4
B、x=
1
2
,y=
1
2
,z=1
C、x=
1
2
,y=
1
2
,z=
1
2
D、x=
1
2
,y=
1
2
,z=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex-ax-1(a為常數(shù)),曲線y=f(x)在與y軸的交點(diǎn)A處的切線斜率為-1.
(Ⅰ)求a的值及函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)證明:當(dāng)x>0時(shí),ex>x2+1;
(Ⅲ)證明:當(dāng)n∈N*時(shí),1+
1
2
+
1
3
+…+
1
n
>ln
(n+1)3
(3e)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)以下算法的程序,畫(huà)出其相應(yīng)的流程圖,并指明該算法的目的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓:
x2
3
+y2=1,過(guò)坐標(biāo)原點(diǎn)O作兩條互相垂直的射線,與橢圓分別交于A、B兩點(diǎn).
(Ⅰ)求證O到直線AB的距離為定值;
(Ⅱ)求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=20.1,b=ln0.1,c=sin1,則( 。
A、a>b>c
B、a>c>b
C、c>a>b
D、b>a>c

查看答案和解析>>

同步練習(xí)冊(cè)答案