【題目】如圖,在四棱錐 A﹣BCDE中,側(cè)面△ADE為等邊三角形,底面 BCDE是等腰梯形,且CD∥B E,DE=2,CD=4,∠CD E=60°,M為D E的中點(diǎn),F(xiàn)為AC的中點(diǎn),且AC=4.
(1)求證:平面 ADE⊥平面BCD;
(2)求證:FB∥平面ADE;
(3)求四棱錐A﹣BCDE的體積.
【答案】
(1)證明:∵△AD E是等邊三角形,M是D E的中點(diǎn),
∴AM⊥DE, ,
∵在△DMC中,DM=1,∠CDM=60°,CD=4,
∴MC2=42+12﹣2×4×1×cos60°=13,
∴ ,
∵在△AMC中,A M2+MC2=3+13=16=AC2,
∴AM⊥MC,
∵M(jìn)C∩DE=M,MC平面BCD,DE平面BCD,
∴AM⊥平面BCD,
∵AM平面ADE,
∴平面ADE⊥平面BCD
(2)證明:分別取AD,DC的中點(diǎn)G,N,連接FG,GE,F(xiàn)N,NB.
∵AC=DC,F(xiàn),NF分別為AC,DC的中點(diǎn),
∴ ,∴ ,
∴FN DN,
∴四邊形DNFG是平行四邊形,
∴ ,
∵點(diǎn)N是DC的中點(diǎn),
∴BC=NC,又∠BCN=60°,
∴△BCN是等邊三角形,
∴∠CNB=∠CDE=60°,
∴ ,
∴四邊形EBND是平行四邊形,
∴ ,
∴ ,
又平面ADE,GE平面ADE,
∴FB∥平面ADE
(3)解:過(guò)點(diǎn)B作BH⊥NC于點(diǎn)H,則BH= = = .
由(2)可知:四邊形EBND是平行四邊形,
∴EB=ND=2,
∴底面等腰梯形BCDE的面積S四邊形EBCD= =3 ,
∴四棱錐A﹣BCDE的體積V= = =3.
【解析】(1)利用等邊三角形的性質(zhì)可得AM⊥DE,在△DMC中,利用余弦定理可得MC2=13,利用勾股定理的逆定理可得:AM⊥MC,再利用線面垂直與面面垂直的判定定理即可證明.(2)分別取AD,DC的中點(diǎn)G,N,連接FG,GE,F(xiàn)N,NB.利用三角形中位線定理與平行四邊形的性質(zhì)可得: ,可得△BCN是等邊三角形,可得四邊形EBND是平行四邊形, , ,可得FB∥平面ADE;(3)過(guò)點(diǎn)B作BH⊥NC于點(diǎn)H,可得BH.又EB=ND=2,利用四棱錐A﹣BCDE的體積V= ,即可得出.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用直線與平面平行的判定和平面與平面垂直的判定的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行;一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)面垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的通項(xiàng)公式為an= ﹣n.
(1)證明:數(shù)列{an}是等差數(shù)列;
(2)求此數(shù)列的前二十項(xiàng)和S20 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入的部分?jǐn)?shù)據(jù)如表:
x | |||||
ωx+φ | 0 | π | 2π | ||
Asin(ωx+φ) | 0 | 2 | 0 | ﹣2 |
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)全,并直接寫出函數(shù)f(x)的解析式;
(2)當(dāng)x∈[0, ]時(shí),求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)的定義域?yàn)?/span>,如果存在正實(shí)數(shù),使得對(duì)任意,都有,且恒成立,則稱函數(shù)為上的“的型增函數(shù)”,已知是定義在上的奇函數(shù),且在時(shí), ,若為上的“2017的型增函數(shù)”,則實(shí)數(shù)的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= (a>0)
(1)若a=1,證明:y=f(x)在R上單調(diào)遞減;
(2)當(dāng)a>1時(shí),討論f(x)零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線y=Asin(wx+φ)(A>0,w>0)上的一個(gè)最高點(diǎn)的坐標(biāo)為( , ),由此點(diǎn)到相鄰最低點(diǎn)間的曲線與x軸交于點(diǎn)( π,0),φ∈(﹣ , ).
(1)求這條曲線的函數(shù)解析式;
(2)求函數(shù)的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若,當(dāng)時(shí),求函數(shù)的最大值;
(3)若且,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示直角梯形ABCD中,AB∥DC,∠A=90°,AB=AD=2DC=4,畫出該梯形的直觀圖A′B′C′D′,并寫出其做法(要求保留作圖過(guò)程的痕跡.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|3≤3x≤27}, .
(1)分別求A∩B,(RB)∪A;
(2)已知集合C={x|1<x<a},若CA,求實(shí)數(shù)a的取值集合.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com