【題目】己知兩點(diǎn),,動(dòng)點(diǎn)Py軸上的攝影是H,且,

(1)求動(dòng)點(diǎn)P的軌跡方程;

(2)設(shè)直線,的兩個(gè)斜率存在,分別記為,若,求點(diǎn)P的坐標(biāo);

(3)若經(jīng)過點(diǎn)的直線l與動(dòng)點(diǎn)P的軌跡有兩個(gè)交點(diǎn)為TQ,當(dāng)時(shí),求直線l的方程.

【答案】1

2)點(diǎn)或P

3

【解析】

(1)設(shè),則,表示出,,的坐標(biāo),代入后化簡(jiǎn),即可求出所求;

(2)由(1)可知點(diǎn)坐標(biāo)設(shè)為,由兩點(diǎn)間的斜率公式求得,,并代入化簡(jiǎn),再與(1)所得的軌跡方程聯(lián)立,即可求解出點(diǎn)坐標(biāo);

(3)設(shè)出,,再設(shè)出直線的方程的點(diǎn)斜式,讓其與動(dòng)點(diǎn)的軌跡方程聯(lián)立化簡(jiǎn)得一個(gè)含斜率的一元二次方程,由韋達(dá)定理寫出根與系數(shù)的關(guān)系,結(jié)合兩點(diǎn)間的距離公式化簡(jiǎn),進(jìn)而求出直線的斜率,得到直線的方程.

(1)設(shè),則,又,

,∴所以動(dòng)點(diǎn)P的軌跡方程為

(2)由題意得:,所以,即

又由(1)可得,所以解得

即點(diǎn)或P

(3)設(shè)直線方程,聯(lián)立方程組

計(jì)算恒成立

設(shè),,所以,

所以

,解得

直線l的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

對(duì)于各項(xiàng)均為整數(shù)的數(shù)列,如果(=1,23,…)為完全平方數(shù),則稱數(shù)

具有性質(zhì)

不論數(shù)列是否具有性質(zhì),如果存在與不是同一數(shù)列的,且

時(shí)滿足下面兩個(gè)條件:的一個(gè)排列;數(shù)列具有性質(zhì),則稱數(shù)列具有變換性質(zhì)

I)設(shè)數(shù)列的前項(xiàng)和,證明數(shù)列具有性質(zhì);

II)試判斷數(shù)列12,3,4,5和數(shù)列1,2,3,,11是否具有變換性質(zhì),具有此性質(zhì)的數(shù)列請(qǐng)寫出相應(yīng)的數(shù)列,不具此性質(zhì)的說明理由;

III)對(duì)于有限項(xiàng)數(shù)列1,23,,某人已經(jīng)驗(yàn)證當(dāng)時(shí),

數(shù)列具有變換性質(zhì),試證明:當(dāng)時(shí),數(shù)列也具有變換性質(zhì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的離心率 ,直線 被以橢圓 的短軸為直徑的圓截得的弦長(zhǎng)為 .

(1)求橢圓 的方程;

(2)過點(diǎn) 的直線 交橢圓于 兩個(gè)不同的點(diǎn),且 ,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別是,且橢圓經(jīng)過點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)取何值時(shí),直線與橢圓有兩個(gè)公共點(diǎn);只有一個(gè)公共點(diǎn);沒有公共點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓C:(a>b>0)的左、右焦點(diǎn)分別為,離心率為,過焦點(diǎn)且垂直于x軸的直線被橢圓C截得的線段長(zhǎng)為1.

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知點(diǎn)M(0,-1),直線l經(jīng)過點(diǎn)N(2,1)且與橢圓C相交于A,B兩點(diǎn)(異于點(diǎn)M),記直線MA的斜率為,直線MB的斜率為,證明 為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是不小于3的正整數(shù),集合,對(duì)于集合中任意兩個(gè)元素.

定義1:.

定義2:若,則稱互為相反元素,記作,或.

(Ⅰ)若,,,試寫出,以及的值;

(Ⅱ)若,證明:;

(Ⅲ)設(shè)是小于的正奇數(shù),至少含有兩個(gè)元素的集合,且對(duì)于集合中任意兩個(gè)不相同的元素,,都有,試求集合中元素個(gè)數(shù)的所有可能值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線過點(diǎn),其參數(shù)方程為為參數(shù), ),以為極點(diǎn), 軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)求已知曲線和曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=ex+1-alnax+aa>0).

(1)當(dāng)a=1時(shí),求曲線y=fx)在點(diǎn)(1,f(1))處的切線方程;

(2)若關(guān)于x的不等式fx)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)求函數(shù)的極值;

(2)設(shè),對(duì)于任意,總有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案