【題目】已知正方體,點(diǎn)是棱的中點(diǎn),設(shè)直線,直線.對(duì)于下列兩個(gè)命題:①過(guò)點(diǎn)有且只有一條直線都相交;②過(guò)點(diǎn)有且只有一條直線、都成.以下判斷正確的是(

A.①為真命題,②為真命題B.①為真命題,②為假命題

C.①為假命題,②為真命題D.①為假命題,②為假命題

【答案】B

【解析】

作出過(guò)P與兩直線相交的直線l判斷①;通過(guò)平移直線ab,結(jié)合異面直線所成角的概念判斷②.

解:直線ABA1D1 是兩條互相垂直的異面直線,點(diǎn)P不在這兩異面直線中的任何一條上,如圖所示:

BB1的中點(diǎn)Q,則PQA1D1,且 PQA1D1,設(shè)A1QAB交于E,則點(diǎn)A1D1、Q、EP共面,

直線EP必與A1D1 相交于某點(diǎn)F,則過(guò)P點(diǎn)有且只有一條直線EFab都相交,故①為真命題;

分別平移a,b,使ab均經(jīng)過(guò)P,則有兩條互相垂直的直線與ab都成45°角,故②為假命題.

∴①為真命題,②為假命題.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商家統(tǒng)計(jì)了去年兩種產(chǎn)品的月銷售額(單位:萬(wàn)元),繪制了月銷售額的雷達(dá)圖,圖中點(diǎn)表示產(chǎn)品2月份銷售額約為20萬(wàn)元,點(diǎn)表示產(chǎn)品9月份銷售額約為25萬(wàn)元.

根據(jù)圖中信息,下面統(tǒng)計(jì)結(jié)論錯(cuò)誤的是(

A.產(chǎn)品的銷售額極差較大B.產(chǎn)品銷售額的中位數(shù)較大

C.產(chǎn)品的銷售額平均值較大D.產(chǎn)品的銷售額波動(dòng)較小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐的底面是正方形,平面,且,該四棱錐的五個(gè)頂點(diǎn)都在同一個(gè)球面上,分別是棱的中點(diǎn),直線被球面所截得的線段長(zhǎng)為,則該球的表面積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求矩陣M的特征值和特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在上的函數(shù).

1)討論的單調(diào)區(qū)間

2)當(dāng)時(shí),存在,使得對(duì)任意均有,求實(shí)數(shù)M的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已如橢圓C:的兩個(gè)焦點(diǎn)與其中一個(gè)頂點(diǎn)構(gòu)成一個(gè)斜邊長(zhǎng)為4的等腰直角三角形.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)設(shè)動(dòng)直線l交橢圓CP,Q兩點(diǎn),直線OP,OQ的斜率分別為kk.,求證OPQ的面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐 E ABCD 中, EC 底面 ABCD , FD / /EC ,底面 ABCD 為矩形, G 為線段 AB 的中點(diǎn), CG DG,CD DF CE 2 ,則四棱錐 E ABCD與三棱錐 F CDG 的公共部分的體積為________________ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年7曰1日至3日,世界新能源汽車大會(huì)在海南博鰲召開,大會(huì)著眼于全球汽車產(chǎn)業(yè)的轉(zhuǎn)型升級(jí)和生態(tài)環(huán)境的持續(xù)改善.某汽車公司順應(yīng)時(shí)代潮流,最新研發(fā)了一款新能源汽車,并在出廠前對(duì)100輛汽車進(jìn)行了單次最大續(xù)航里程(理論上是指新能源汽車所裝載的燃料或電池所能夠提供給車行駛的最遠(yuǎn)里程)的測(cè)試.現(xiàn)對(duì)測(cè)試數(shù)據(jù)進(jìn)行分析,得到如下的頻率分布直方圖:

(1)估計(jì)這100輛汽車的單次最大續(xù)航里程的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表).

(2)根據(jù)大量的汽車測(cè)試數(shù)據(jù),可以認(rèn)為這款汽車的單次最大續(xù)航里程近似地服從正態(tài)分布,經(jīng)計(jì)算第(1)問(wèn)中樣本標(biāo)準(zhǔn)差的近似值為50.用樣本平均數(shù)作為的近似值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,現(xiàn)任取一輛汽車,求它的單次最大續(xù)航里程恰在250千米到400千米之間的概率.

參考數(shù)據(jù):若隨機(jī)變量ξ服從正態(tài)分布,則,,.

(3)某汽車銷售公司為推廣此款新能源汽車,現(xiàn)面向意向客戶推出“玩游戲,送大獎(jiǎng)”活動(dòng),客戶可根據(jù)拋擲硬幣的結(jié)果,操控微型遙控車在方格圖上行進(jìn),若遙控車最終停在“勝利大本營(yíng)”,則可獲得購(gòu)車優(yōu)惠券.已知硬幣出現(xiàn)正、反面的概率都是,方格圖上標(biāo)有第0格、第1格、第2格、…、第50格.遙控車開始在第0格,客戶每擲一次硬幣,遙控車車向前移動(dòng)一次,若擲出正面,遙控車向前移動(dòng)一格(從),若擲出反面,遙控車向前移動(dòng)兩格(從),直到遙控車移到第49格(勝利大本營(yíng))或第50格(失敗大本營(yíng))時(shí),游戲結(jié)束,設(shè)遙控車移到第n格的概率為,試說(shuō)明是等比數(shù)列,并解釋此方案能否成功吸引顧客購(gòu)買該款新能源汽車.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動(dòng),在實(shí)驗(yàn)地分別用甲、乙方法培育該品種花苗.為觀測(cè)其生長(zhǎng)情況,分別在實(shí)驗(yàn)地隨機(jī)抽取各50株,對(duì)每株進(jìn)行綜合評(píng)分,將每株所得的綜合評(píng)分制成如圖所示的頻率分布直方圖,記綜合評(píng)分為80及以上的花苗為優(yōu)質(zhì)花苗.

1)求圖中的值,并估計(jì)該品種花苗綜合評(píng)分的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);

2)填寫下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為優(yōu)質(zhì)花苗與培駐外方法有關(guān).

優(yōu)質(zhì)花苗

非優(yōu)質(zhì)花苗

合計(jì)

甲培育法

20

乙培育法

10

合計(jì)

附:下面的臨界值表僅供參考.

0.050

0.010

0.001

3.841

6.635

10.828

(參考公式:,其中

查看答案和解析>>

同步練習(xí)冊(cè)答案