【題目】已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},則(UP)∪Q=( 。
A.{1}
B.{3,5}
C.{1,2,4,6}
D.{1,2,3,4,5}
【答案】C
【解析】解:UP={2,4,6},
(UP)∪Q={2,4,6}∪{1,2,4}={1,2,4,6}.
故選C.
【考點(diǎn)精析】利用交、并、補(bǔ)集的混合運(yùn)算對(duì)題目進(jìn)行判斷即可得到答案,需要熟知求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)y=f(x)有反函數(shù)y=f﹣1(x),又y=f(x+2)與y=f﹣1(x﹣1)互為反函數(shù),則f﹣1(2004)﹣f﹣1(1)的值為( )
A.4006
B.4008
C.2003
D.2004
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有三張卡片,分別寫(xiě)有1和2,1和3,2和3。甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說(shuō):“我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說(shuō):“我與丙的卡片上相同的數(shù)字不是1”,丙說(shuō):“我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(2x+1)ex , f′(x)為f(x)的導(dǎo)函數(shù),則f′(0)的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表顯示出樣本中變量y隨變量x變化的一組數(shù)據(jù),由此判斷它最可能是( )
x | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
y | 14 | 18 | 19 | 20 | 23 | 25 | 28 |
A. 線性函數(shù)模型 B. 二次函數(shù)模型
C. 指數(shù)函數(shù)模型 D. 對(duì)數(shù)函數(shù)模型
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面的表述:
①6=p; ②a=3×5+2; ③b+3=5; ④p=((3x+2)-4)x+3;
⑤a=a3; ⑥x,y,z=5; ⑦ab=3; ⑧x=y(tǒng)+2+x.
其中是賦值語(yǔ)句的序號(hào)有________.(注:要求把正確的表述全填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l1:x+ay+6=0和l2:(a-2)x+3y+2a=0,則l1∥l2的充要條件是a=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=x3+x2-2x-2的一個(gè)正數(shù)零點(diǎn)附近的函數(shù)值用二分法逐次計(jì)算,參考數(shù)據(jù)如表:
f(1)=-2 | f(1.5)=0.625 |
f(1.25)=-0.984 | f(1.375)=-0.260 |
f(1.438)=0.165 | f(1.406 5)=-0.052 |
那么方程x3+x2-2x-2=0的一個(gè)近似根(精確到0.1)為( )
A. 1.2 B. 1.3
C. 1.4 D. 1.5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com