△ABC中,AB=AC,BC的邊長為2,則
BA
BC
的值為
 
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:根據(jù)數(shù)量積的定義和三角函數(shù)判斷求解.
解答: 解:在△ABC中,BC=2,AB=AC,
設(shè)AB=AC=x,則2x>2,x>1,
∴cosB=
4+x2-x2
2×2•x
=
1
x

所以
BA
BC
=2xcosB=2x
1
x
=2.
故答案為2.
點評:本題利用向量為載體,考察函數(shù)的單調(diào)性,余弦定理,三角形中的邊角關(guān)系.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x2-ex-ax在R上存在單調(diào)遞增區(qū)間,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x|2x-a|(a>0)在區(qū)間[2,4]上單調(diào)遞減,則實數(shù)a的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知首項都是1的數(shù)列{an},{bn}(bn≠0,n∈N*)滿足bn+1=
an+1bn
an+3bn

(Ⅰ)令cn=
an
bn
,求數(shù)列{cn}的通項公式;
(Ⅱ)若數(shù)列{bn}為各項均為正數(shù)的等比數(shù)列,且b32=4b2•b6,求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P是圓C:x2+y2-4ax-2by-5=0(a>0,b>0)上任意一點,若點P關(guān)于直線x+2y-1=0的對稱點仍在圓C上,則
4
a
+
1
b
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x∈R,函數(shù)f(x)=2x+k•2-x,k∈R.
(Ⅰ)若函數(shù)f(x)為奇函數(shù),且f(2m+1)+f(m2-2m-4)>0,求實數(shù)m的取值范圍;
(Ⅱ)若對任意的x∈[0,+∞]都有f(x)>2-x成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù):s=
3t2+2(0≤t≤3)
29+3(t-3)2(t≥3)
<0,則函數(shù)在t=1的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,是偶函數(shù)且在區(qū)間(0,+∞)上是減函數(shù)的為(  )
A、y=
1
x
B、y=x2
C、y=
1
x2
D、y=(
1
2
)x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinωx,cosωx),
b
=(cosωx,
3
cosωx),(ω>0),函數(shù)f(x)=
a
b
-
3
2
的最小正周期為π.
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)如果△ABC的三邊a、b、c所對的角分別為A,B,C,且滿足b2+c2=a2-
3
bc,求f(A)的值.

查看答案和解析>>

同步練習冊答案