某公司是否對某一項(xiàng)目投資,由甲、乙、丙三位決策人投票決定.他們?nèi)硕加小巴狻、“中立”、“反對”三類票各一張.投票時(shí),每人必須且只能投一張票,每人投三類票中的任何一類票的概率都為,他們的投票相互沒有影響.規(guī)定:若投票結(jié)果中至少有兩張“同意”票,則決定對該項(xiàng)目投資;否則,放棄對該項(xiàng)目投資.
(Ⅰ)求此公司決定對該項(xiàng)目投資的概率;
(Ⅱ)記投票結(jié)果中“中立”票的張數(shù)為隨機(jī)變量,求的分布列及數(shù)學(xué)期望E
(I)(II)1ξ的分布列為
ξ
0
1
2
3
P




          ……4分
∴Eξ=nP=3×=1
(1)此公司決定對該項(xiàng)目投資的概率為
P=C32()2()+C33()3                                                                             ……6分
(2)ξ的取值為0、1、2、3
P(ξ=0)=(1-)3
P(ξ=1)=C31()()2
P(ξ=2)=C32()2()=
P(ξ=3)=()3
∴ξ的分布列為
ξ
0
1
2
3
P




          ……4分
∴Eξ=nP=3×=1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某家具城進(jìn)行促銷活動(dòng),促銷方案是:顧客每消費(fèi)滿1000元,便可以獲得獎(jiǎng)券一張,每張獎(jiǎng)券
中獎(jiǎng)的概率為,若中獎(jiǎng),則家具城返還顧客現(xiàn)金1000元,某顧客購買一張價(jià)格為3400元的餐桌,
得到3張獎(jiǎng)券,設(shè)該顧客購買餐桌的實(shí)際支出為元;
(I)求的所有可能取值;
(II)求的分布列;
(III)求的期望E();

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)質(zhì)地均勻的正四面體玩具的4個(gè)面上分別刻著數(shù)字1,2,3,4,將4個(gè)這樣的玩具同時(shí)拋擲于桌面上。
(1)求與桌面接觸的4個(gè)面上的4個(gè)數(shù)的乘積不能被4整除的概率;
(2)設(shè)為與桌面接觸的4個(gè)面上數(shù)字中偶數(shù)的個(gè)數(shù),求的分歧布列及期望E。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
購買某種保險(xiǎn),每個(gè)投保人每年度向保險(xiǎn)公司交納保費(fèi)元,若投保人在購買保險(xiǎn)的一年度內(nèi)出險(xiǎn),則可以獲得10 000元的賠償金.假定在一年度內(nèi)有10 000人購買了這種保險(xiǎn),且各投保人是否出險(xiǎn)相互獨(dú)立.已知保險(xiǎn)公司在一年度內(nèi)至少支付賠償金10 000元的概率為。
(Ⅰ)求一投保人在一年度內(nèi)出險(xiǎn)的概率;
(Ⅱ)設(shè)保險(xiǎn)公司開辦該項(xiàng)險(xiǎn)種業(yè)務(wù)除賠償金外的成本為50 000元,為保證盈利的期望不小于0,求每位投保人應(yīng)交納的最低保費(fèi)(單位:元)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某商場為刺激消費(fèi),擬按以下方案進(jìn)行促銷:顧客每消費(fèi)500元便得到抽獎(jiǎng)券一張,每張抽獎(jiǎng)券的中獎(jiǎng)概率為,若中獎(jiǎng),商場返回顧客現(xiàn)金100元.某顧客現(xiàn)購買價(jià)格為2300的臺(tái)式電腦一臺(tái),得到獎(jiǎng)券4張.
(Ⅰ)設(shè)該顧客抽獎(jiǎng)后中獎(jiǎng)的抽獎(jiǎng)券張數(shù)為,求的分布列;
(Ⅱ)設(shè)該顧客購買臺(tái)式電腦的實(shí)際支出為(元),用表示,并求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)某商場準(zhǔn)備在暑假期間舉行促銷活動(dòng),根據(jù)市場調(diào)查,該商場決定從3種服裝商品、2種家電商品、4種日用商品中,選出3種商品進(jìn)行促銷活動(dòng).(Ⅰ)試求選出的3種商品至少有一種日用商品的概率;(Ⅱ)商場對選出的商品采用的促銷方案是有獎(jiǎng)銷售,即在該商品現(xiàn)價(jià)的基礎(chǔ)上將價(jià)格提高180元,同時(shí)允許顧客有3次抽獎(jiǎng)的機(jī)會(huì),若中獎(jiǎng),則每次中獎(jiǎng)都可獲得一定數(shù)額的獎(jiǎng)金.假設(shè)顧客每次抽獎(jiǎng)時(shí)獲獎(jiǎng)與否是等概率的.請問:商場應(yīng)將中獎(jiǎng)獎(jiǎng)金數(shù)額最高定為多少元,才能使促銷方案對自己有利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(Ⅰ)求擲骰子的次數(shù)為7的概率;
(Ⅱ)求的分布列及數(shù)學(xué)期望E

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)一部機(jī)器在一天內(nèi)發(fā)生故障的概率為0 2,機(jī)器發(fā)生故障時(shí)全天停止工作 若一周5個(gè)工作日里均無故障,可獲利潤10萬元;發(fā)生一次故障可獲利潤5萬元,只發(fā)生兩次故障可獲利潤0萬元,發(fā)生三次或三次以上故障就要虧損2萬元。求一周內(nèi)期望利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋擲一枚硬幣5次,出現(xiàn)正面向上次數(shù)的數(shù)學(xué)期望為         

查看答案和解析>>

同步練習(xí)冊答案